MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi3 Structured version   Unicode version

Theorem metcnpi3 18576
Description: Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 18575 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnpi3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Distinct variable groups:    x, y, F    x, J, y    x, K, y    x, X, y   
x, Y, y    x, A, y    x, C, y   
x, D, y    x, P, y

Proof of Theorem metcnpi3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnpi2 18575 . 2  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. z  e.  RR+  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) )
4 rphalfcl 10636 . . . 4  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
54ad2antrl 709 . . 3  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\ 
A. y  e.  X  ( ( y C P )  <  z  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) ) )  ->  (
z  /  2 )  e.  RR+ )
6 simplll 735 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  C  e.  ( * Met `  X
) )
7 simprr 734 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  y  e.  X )
8 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
9 eqid 2436 . . . . . . . . . . . 12  |-  U. J  =  U. J
109cnprcl 17309 . . . . . . . . . . 11  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  U. J )
118, 10syl 16 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  P  e.  U. J )
121mopnuni 18471 . . . . . . . . . . 11  |-  ( C  e.  ( * Met `  X )  ->  X  =  U. J )
136, 12syl 16 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  X  =  U. J )
1411, 13eleqtrrd 2513 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  P  e.  X )
15 xmetcl 18361 . . . . . . . . 9  |-  ( ( C  e.  ( * Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y C P )  e.  RR* )
166, 7, 14, 15syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( y C P )  e.  RR* )
174ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( z  /  2 )  e.  RR+ )
1817rpxrd 10649 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( z  /  2 )  e. 
RR* )
19 rpxr 10619 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2019ad2antrl 709 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  z  e.  RR* )
21 rphalflt 10638 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( z  /  2 )  < 
z )
2221ad2antrl 709 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( z  /  2 )  < 
z )
23 xrlelttr 10746 . . . . . . . . . 10  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( ( y C P )  <_  (
z  /  2 )  /\  ( z  / 
2 )  <  z
)  ->  ( y C P )  <  z
) )
2423exp3acom23 1381 . . . . . . . . 9  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( z  /  2
)  <  z  ->  ( ( y C P )  <_  ( z  /  2 )  -> 
( y C P )  <  z ) ) )
2524imp 419 . . . . . . . 8  |-  ( ( ( ( y C P )  e.  RR*  /\  ( z  /  2
)  e.  RR*  /\  z  e.  RR* )  /\  (
z  /  2 )  <  z )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
2616, 18, 20, 22, 25syl31anc 1187 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( (
y C P )  <_  ( z  / 
2 )  ->  (
y C P )  <  z ) )
27 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  D  e.  ( * Met `  Y
) )
281mopntopon 18469 . . . . . . . . . . . 12  |-  ( C  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
296, 28syl 16 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  J  e.  (TopOn `  X ) )
302mopntopon 18469 . . . . . . . . . . . 12  |-  ( D  e.  ( * Met `  Y )  ->  K  e.  (TopOn `  Y )
)
3127, 30syl 16 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  (TopOn `  Y ) )
32 cnpf2 17314 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
3329, 31, 8, 32syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F : X
--> Y )
3433, 7ffvelrnd 5871 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( F `  y )  e.  Y
)
3533, 14ffvelrnd 5871 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( F `  P )  e.  Y
)
36 xmetcl 18361 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  Y )  /\  ( F `  y )  e.  Y  /\  ( F `  P
)  e.  Y )  ->  ( ( F `
 y ) D ( F `  P
) )  e.  RR* )
3727, 34, 35, 36syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( ( F `  y ) D ( F `  P ) )  e. 
RR* )
38 simplrr 738 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR+ )
3938rpxrd 10649 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR* )
40 xrltle 10742 . . . . . . . 8  |-  ( ( ( ( F `  y ) D ( F `  P ) )  e.  RR*  /\  A  e.  RR* )  ->  (
( ( F `  y ) D ( F `  P ) )  <  A  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)
4137, 39, 40syl2anc 643 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( (
( F `  y
) D ( F `
 P ) )  <  A  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
4226, 41imim12d 70 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  ( (
( y C P )  <  z  -> 
( ( F `  y ) D ( F `  P ) )  <  A )  ->  ( ( y C P )  <_ 
( z  /  2
)  ->  ( ( F `  y ) D ( F `  P ) )  <_  A ) ) )
4342anassrs 630 . . . . 5  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  z  e.  RR+ )  /\  y  e.  X )  ->  ( ( ( y C P )  < 
z  ->  ( ( F `  y ) D ( F `  P ) )  < 
A )  ->  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
) )
4443ralimdva 2784 . . . 4  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  z  e.  RR+ )  -> 
( A. y  e.  X  ( ( y C P )  < 
z  ->  ( ( F `  y ) D ( F `  P ) )  < 
A )  ->  A. y  e.  X  ( (
y C P )  <_  ( z  / 
2 )  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) ) )
4544impr 603 . . 3  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\ 
A. y  e.  X  ( ( y C P )  <  z  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) ) )  ->  A. y  e.  X  ( (
y C P )  <_  ( z  / 
2 )  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
46 breq2 4216 . . . . . 6  |-  ( x  =  ( z  / 
2 )  ->  (
( y C P )  <_  x  <->  ( y C P )  <_  (
z  /  2 ) ) )
4746imbi1d 309 . . . . 5  |-  ( x  =  ( z  / 
2 )  ->  (
( ( y C P )  <_  x  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )  <->  ( ( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
) )
4847ralbidv 2725 . . . 4  |-  ( x  =  ( z  / 
2 )  ->  ( A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )  <->  A. y  e.  X  ( ( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
) )
4948rspcev 3052 . . 3  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. y  e.  X  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
505, 45, 49syl2anc 643 . 2  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  /\  ( z  e.  RR+  /\ 
A. y  e.  X  ( ( y C P )  <  z  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
513, 50rexlimddv 2834 1  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   U.cuni 4015   class class class wbr 4212   -->wf 5450   ` cfv 5454  (class class class)co 6081   RR*cxr 9119    < clt 9120    <_ cle 9121    / cdiv 9677   2c2 10049   RR+crp 10612   * Metcxmt 16686   MetOpencmopn 16691  TopOnctopon 16959    CnP ccnp 17289
This theorem is referenced by:  blocnilem  22305
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cnp 17292
  Copyright terms: Public domain W3C validator