MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Unicode version

Theorem metdseq0 18845
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
metdscn.j  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metdseq0  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
Distinct variable groups:    x, y, A    x, D, y    y, J    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)    J( x)

Proof of Theorem metdseq0
Dummy variables  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 996 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z ) )  ->  D  e.  ( * Met `  X ) )
2 simprl 733 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z ) )  -> 
z  e.  J )
3 simprr 734 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z ) )  ->  A  e.  z )
4 metdscn.j . . . . . . . 8  |-  J  =  ( MetOpen `  D )
54mopni2 18484 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  z  e.  J  /\  A  e.  z
)  ->  E. r  e.  RR+  ( A (
ball `  D )
r )  C_  z
)
61, 2, 3, 5syl3anc 1184 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z ) )  ->  E. r  e.  RR+  ( A ( ball `  D
) r )  C_  z )
7 simprr 734 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( A ( ball `  D ) r ) 
C_  z )
8 ssrin 3534 . . . . . . . 8  |-  ( ( A ( ball `  D
) r )  C_  z  ->  ( ( A ( ball `  D
) r )  i^i 
S )  C_  (
z  i^i  S )
)
97, 8syl 16 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( ( A (
ball `  D )
r )  i^i  S
)  C_  ( z  i^i  S ) )
10 rpgt0 10587 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  0  < 
r )
11 0re 9055 . . . . . . . . . . 11  |-  0  e.  RR
12 rpre 10582 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e.  RR )
13 ltnle 9119 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  r  e.  RR )  ->  ( 0  <  r  <->  -.  r  <_  0 ) )
1411, 12, 13sylancr 645 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  ( 0  <  r  <->  -.  r  <_  0 ) )
1510, 14mpbid 202 . . . . . . . . 9  |-  ( r  e.  RR+  ->  -.  r  <_  0 )
1615ad2antrl 709 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  -.  r  <_  0 )
17 simpllr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( F `  A
)  =  0 )
1817breq2d 4192 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  ( F `  A )  <->  r  <_  0 ) )
191adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  D  e.  ( * Met `  X ) )
20 simpl2 961 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  S  C_  X
)
2120ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  S  C_  X )
22 simpl3 962 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  X )
2322ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  A  e.  X )
24 rpxr 10583 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  r  e. 
RR* )
2524ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
r  e.  RR* )
26 metdscn.f . . . . . . . . . . . . 13  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
2726metdsge 18840 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  r  e.  RR* )  ->  ( r  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
2819, 21, 23, 25, 27syl31anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  ( F `  A )  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
2918, 28bitr3d 247 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  0  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
30 incom 3501 . . . . . . . . . . 11  |-  ( S  i^i  ( A (
ball `  D )
r ) )  =  ( ( A (
ball `  D )
r )  i^i  S
)
3130eqeq1i 2419 . . . . . . . . . 10  |-  ( ( S  i^i  ( A ( ball `  D
) r ) )  =  (/)  <->  ( ( A ( ball `  D
) r )  i^i 
S )  =  (/) )
3229, 31syl6bb 253 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  0  <->  ( ( A ( ball `  D ) r )  i^i  S )  =  (/) ) )
3332necon3bbid 2609 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( -.  r  <_ 
0  <->  ( ( A ( ball `  D
) r )  i^i 
S )  =/=  (/) ) )
3416, 33mpbid 202 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( ( A (
ball `  D )
r )  i^i  S
)  =/=  (/) )
35 ssn0 3628 . . . . . . 7  |-  ( ( ( ( A (
ball `  D )
r )  i^i  S
)  C_  ( z  i^i  S )  /\  (
( A ( ball `  D ) r )  i^i  S )  =/=  (/) )  ->  ( z  i^i  S )  =/=  (/) )
369, 34, 35syl2anc 643 . . . . . 6  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( z  i^i  S
)  =/=  (/) )
376, 36rexlimddv 2802 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z ) )  -> 
( z  i^i  S
)  =/=  (/) )
3837expr 599 . . . 4  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  /\  z  e.  J )  ->  ( A  e.  z  ->  ( z  i^i  S )  =/=  (/) ) )
3938ralrimiva 2757 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A. z  e.  J  ( A  e.  z  ->  ( z  i^i  S )  =/=  (/) ) )
404mopntopon 18430 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
41403ad2ant1 978 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  J  e.  (TopOn `  X ) )
4241adantr 452 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  J  e.  (TopOn `  X ) )
43 topontop 16954 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4442, 43syl 16 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  J  e.  Top )
45 toponuni 16955 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
4642, 45syl 16 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  X  =  U. J )
4720, 46sseqtrd 3352 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  S  C_  U. J
)
4822, 46eleqtrd 2488 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  U. J )
49 eqid 2412 . . . . 5  |-  U. J  =  U. J
5049elcls 17100 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  A  e.  U. J )  ->  ( A  e.  ( ( cls `  J
) `  S )  <->  A. z  e.  J  ( A  e.  z  -> 
( z  i^i  S
)  =/=  (/) ) ) )
5144, 47, 48, 50syl3anc 1184 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  ( A  e.  ( ( cls `  J
) `  S )  <->  A. z  e.  J  ( A  e.  z  -> 
( z  i^i  S
)  =/=  (/) ) ) )
5239, 51mpbird 224 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  ( ( cls `  J
) `  S )
)
53 incom 3501 . . . . . . 7  |-  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )
5426metdsf 18839 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,]  +oo ) )
5554ffvelrnda 5837 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  A  e.  X )  ->  ( F `  A )  e.  ( 0 [,]  +oo ) )
56553impa 1148 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  e.  ( 0 [,]  +oo )
)
57 elxrge0 10972 . . . . . . . . . . 11  |-  ( ( F `  A )  e.  ( 0 [,] 
+oo )  <->  ( ( F `  A )  e.  RR*  /\  0  <_ 
( F `  A
) ) )
5857simplbi 447 . . . . . . . . . 10  |-  ( ( F `  A )  e.  ( 0 [,] 
+oo )  ->  ( F `  A )  e.  RR* )
5956, 58syl 16 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  e.  RR* )
60 xrleid 10707 . . . . . . . . 9  |-  ( ( F `  A )  e.  RR*  ->  ( F `
 A )  <_ 
( F `  A
) )
6159, 60syl 16 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  <_  ( F `  A )
)
6226metdsge 18840 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  e.  RR* )  ->  ( ( F `
 A )  <_ 
( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
6359, 62mpdan 650 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
6461, 63mpbid 202 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( S  i^i  ( A ( ball `  D ) ( F `
 A ) ) )  =  (/) )
6553, 64syl5eq 2456 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  (/) )
6665adantr 452 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  (/) )
6741ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  J  e.  (TopOn `  X ) )
6867, 43syl 16 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  J  e.  Top )
69 simpll2 997 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  S  C_  X
)
7067, 45syl 16 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  X  =  U. J )
7169, 70sseqtrd 3352 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  S  C_  U. J
)
72 simplr 732 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( ( cls `  J
) `  S )
)
73 simpll1 996 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  D  e.  ( * Met `  X
) )
74 simpll3 998 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  X )
7559ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( F `  A )  e.  RR* )
764blopn 18491 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  A  e.  X  /\  ( F `  A
)  e.  RR* )  ->  ( A ( ball `  D ) ( F `
 A ) )  e.  J )
7773, 74, 75, 76syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( A
( ball `  D )
( F `  A
) )  e.  J
)
78 simpr 448 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  0  <  ( F `  A ) )
79 xblcntr 18402 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  A  e.  X  /\  ( ( F `  A )  e.  RR*  /\  0  <  ( F `
 A ) ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
8073, 74, 75, 78, 79syl112anc 1188 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
8149clsndisj 17102 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  U. J  /\  A  e.  ( ( cls `  J ) `  S ) )  /\  ( ( A (
ball `  D )
( F `  A
) )  e.  J  /\  A  e.  ( A ( ball `  D
) ( F `  A ) ) ) )  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =/=  (/) )
8268, 71, 72, 77, 80, 81syl32anc 1192 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =/=  (/) )
8382ex 424 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( 0  <  ( F `  A )  ->  (
( A ( ball `  D ) ( F `
 A ) )  i^i  S )  =/=  (/) ) )
8483necon2bd 2624 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( A ( ball `  D ) ( F `
 A ) )  i^i  S )  =  (/)  ->  -.  0  <  ( F `  A ) ) )
8566, 84mpd 15 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  -.  0  <  ( F `  A
) )
8657simprbi 451 . . . . . . . 8  |-  ( ( F `  A )  e.  ( 0 [,] 
+oo )  ->  0  <_  ( F `  A
) )
8756, 86syl 16 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  0  <_  ( F `  A ) )
88 0xr 9095 . . . . . . . 8  |-  0  e.  RR*
89 xrleloe 10701 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
9088, 59, 89sylancr 645 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( 0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
9187, 90mpbid 202 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
9291adantr 452 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
9392ord 367 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( -.  0  <  ( F `  A )  ->  0  =  ( F `  A ) ) )
9485, 93mpd 15 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  0  =  ( F `  A ) )
9594eqcomd 2417 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F `  A )  =  0 )
9652, 95impbida 806 1  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   E.wrex 2675    i^i cin 3287    C_ wss 3288   (/)c0 3596   U.cuni 3983   class class class wbr 4180    e. cmpt 4234   `'ccnv 4844   ran crn 4846   ` cfv 5421  (class class class)co 6048   supcsup 7411   RRcr 8953   0cc0 8954    +oocpnf 9081   RR*cxr 9083    < clt 9084    <_ cle 9085   RR+crp 10576   [,]cicc 10883   * Metcxmt 16649   ballcbl 16651   MetOpencmopn 16654   Topctop 16921  TopOnctopon 16922   clsccl 17045
This theorem is referenced by:  metnrmlem1a  18849  lebnumlem1  18947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-n0 10186  df-z 10247  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-icc 10887  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-bl 16660  df-mopn 16661  df-top 16926  df-bases 16928  df-topon 16929  df-cld 17046  df-ntr 17047  df-cls 17048
  Copyright terms: Public domain W3C validator