MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Unicode version

Theorem metdsf 18368
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
Assertion
Ref Expression
metdsf  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,]  +oo ) )
Distinct variable groups:    x, y, D    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem metdsf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simplll 734 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  /\  y  e.  S )  ->  D  e.  ( * Met `  X
) )
2 simplr 731 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  /\  y  e.  S )  ->  x  e.  X )
3 simplr 731 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  S  C_  X )
43sselda 3193 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  /\  y  e.  S )  ->  y  e.  X )
5 xmetcl 17912 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x D y )  e. 
RR* )
61, 2, 4, 5syl3anc 1182 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  /\  y  e.  S )  ->  (
x D y )  e.  RR* )
7 eqid 2296 . . . . . 6  |-  ( y  e.  S  |->  ( x D y ) )  =  ( y  e.  S  |->  ( x D y ) )
86, 7fmptd 5700 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  (
y  e.  S  |->  ( x D y ) ) : S --> RR* )
9 frn 5411 . . . . 5  |-  ( ( y  e.  S  |->  ( x D y ) ) : S --> RR*  ->  ran  ( y  e.  S  |->  ( x D y ) )  C_  RR* )
108, 9syl 15 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  ran  ( y  e.  S  |->  ( x D y ) )  C_  RR* )
11 infmxrcl 10651 . . . 4  |-  ( ran  ( y  e.  S  |->  ( x D y ) )  C_  RR*  ->  sup ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  )  e.  RR* )
1210, 11syl 15 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  sup ( ran  ( y  e.  S  |->  ( x D y ) ) , 
RR* ,  `'  <  )  e.  RR* )
13 xmetge0 17925 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x D y ) )
141, 2, 4, 13syl3anc 1182 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  /\  y  e.  S )  ->  0  <_  ( x D y ) )
1514ralrimiva 2639 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  A. y  e.  S  0  <_  ( x D y ) )
16 ovex 5899 . . . . . . 7  |-  ( x D y )  e. 
_V
1716rgenw 2623 . . . . . 6  |-  A. y  e.  S  ( x D y )  e. 
_V
18 breq2 4043 . . . . . . 7  |-  ( z  =  ( x D y )  ->  (
0  <_  z  <->  0  <_  ( x D y ) ) )
197, 18ralrnmpt 5685 . . . . . 6  |-  ( A. y  e.  S  (
x D y )  e.  _V  ->  ( A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_ 
z  <->  A. y  e.  S 
0  <_  ( x D y ) ) )
2017, 19ax-mp 8 . . . . 5  |-  ( A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z  <->  A. y  e.  S  0  <_  ( x D y ) )
2115, 20sylibr 203 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z )
22 0xr 8894 . . . . 5  |-  0  e.  RR*
23 infmxrgelb 10669 . . . . 5  |-  ( ( ran  ( y  e.  S  |->  ( x D y ) )  C_  RR* 
/\  0  e.  RR* )  ->  ( 0  <_  sup ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_ 
z ) )
2410, 22, 23sylancl 643 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  (
0  <_  sup ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z ) )
2521, 24mpbird 223 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  0  <_  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
26 elxrge0 10763 . . 3  |-  ( sup ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  )  e.  ( 0 [,] 
+oo )  <->  ( sup ( ran  ( y  e.  S  |->  ( x D y ) ) , 
RR* ,  `'  <  )  e.  RR*  /\  0  <_  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) ) )
2712, 25, 26sylanbrc 645 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  sup ( ran  ( y  e.  S  |->  ( x D y ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] 
+oo ) )
28 metdscn.f . 2  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
2927, 28fmptd 5700 1  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,]  +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   0cc0 8753    +oocpnf 8880   RR*cxr 8882    < clt 8883    <_ cle 8884   [,]cicc 10675   * Metcxmt 16385
This theorem is referenced by:  metds0  18370  metdstri  18371  metdsre  18373  metdseq0  18374  metdscnlem  18375  metdscn  18376  metnrmlem1a  18378  metnrmlem1  18379  lebnumlem1  18475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-xmet 16389
  Copyright terms: Public domain W3C validator