Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metequiv2 Structured version   Unicode version

Theorem metequiv2 18540
 Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3
metequiv.4
Assertion
Ref Expression
metequiv2
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 742 . . . . . . . . . . 11
2 simplll 735 . . . . . . . . . . . 12
3 simplr 732 . . . . . . . . . . . 12
4 simprlr 740 . . . . . . . . . . . . 13
54rpxrd 10649 . . . . . . . . . . . 12
6 simprll 739 . . . . . . . . . . . . 13
76rpxrd 10649 . . . . . . . . . . . 12
8 simprrl 741 . . . . . . . . . . . 12
9 ssbl 18453 . . . . . . . . . . . 12
102, 3, 5, 7, 8, 9syl221anc 1195 . . . . . . . . . . 11
111, 10eqsstr3d 3383 . . . . . . . . . 10
12 simpllr 736 . . . . . . . . . . . 12
13 ssbl 18453 . . . . . . . . . . . 12
1412, 3, 5, 7, 8, 13syl221anc 1195 . . . . . . . . . . 11
151, 14eqsstrd 3382 . . . . . . . . . 10
1611, 15jca 519 . . . . . . . . 9
1716expr 599 . . . . . . . 8
1817anassrs 630 . . . . . . 7
1918reximdva 2818 . . . . . 6
20 r19.40 2859 . . . . . 6
2119, 20syl6 31 . . . . 5
2221ralimdva 2784 . . . 4
23 r19.26 2838 . . . 4
2422, 23syl6ib 218 . . 3
2524ralimdva 2784 . 2
26 metequiv.3 . . 3
27 metequiv.4 . . 3
2826, 27metequiv 18539 . 2
2925, 28sylibrd 226 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  wral 2705  wrex 2706   wss 3320   class class class wbr 4212  cfv 5454  (class class class)co 6081  cxr 9119   cle 9121  crp 10612  cxmt 16686  cbl 16688  cmopn 16691 This theorem is referenced by:  stdbdmopn  18548 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-bl 16697  df-mopn 16698  df-bases 16965
 Copyright terms: Public domain W3C validator