MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metf Unicode version

Theorem metf 17911
Description: Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
metf  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )

Proof of Theorem metf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metflem 17909 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) )
21simpld 445 1  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   class class class wbr 4039    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753    + caddc 8756    <_ cle 8884   Metcme 16386
This theorem is referenced by:  metcl  17913  metn0  17940  metres2  17943  metres  17945  msf  18020  isngp3  18136  tngngp2  18184  xrsdsre  18332  metdcn2  18360  cncms  18790  isbnd3  26611  isbnd3b  26612  ssbnd  26615  bnd2lem  26618  prdsbnd  26620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-met 16390
  Copyright terms: Public domain W3C validator