MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Unicode version

Theorem metnrmlem2 18380
Description: Lemma for metnrm 18382. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
metdscn.j  |-  J  =  ( MetOpen `  D )
metnrmlem.1  |-  ( ph  ->  D  e.  ( * Met `  X ) )
metnrmlem.2  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
metnrmlem.3  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
metnrmlem.4  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
metnrmlem.u  |-  U  = 
U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )
Assertion
Ref Expression
metnrmlem2  |-  ( ph  ->  ( U  e.  J  /\  T  C_  U ) )
Distinct variable groups:    x, y,
t, D    t, J, y    ph, t    t, T, x, y    t, S, x, y    t, X, x, y    t, F
Allowed substitution hints:    ph( x, y)    U( x, y, t)    F( x, y)    J( x)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3  |-  U  = 
U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )
2 metnrmlem.1 . . . . 5  |-  ( ph  ->  D  e.  ( * Met `  X ) )
3 metdscn.j . . . . . 6  |-  J  =  ( MetOpen `  D )
43mopntop 18002 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
52, 4syl 15 . . . 4  |-  ( ph  ->  J  e.  Top )
62adantr 451 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  D  e.  ( * Met `  X
) )
7 metnrmlem.3 . . . . . . . . 9  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
8 eqid 2296 . . . . . . . . . 10  |-  U. J  =  U. J
98cldss 16782 . . . . . . . . 9  |-  ( T  e.  ( Clsd `  J
)  ->  T  C_  U. J
)
107, 9syl 15 . . . . . . . 8  |-  ( ph  ->  T  C_  U. J )
113mopnuni 18003 . . . . . . . . 9  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
122, 11syl 15 . . . . . . . 8  |-  ( ph  ->  X  =  U. J
)
1310, 12sseqtr4d 3228 . . . . . . 7  |-  ( ph  ->  T  C_  X )
1413sselda 3193 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  X )
15 metdscn.f . . . . . . . . . 10  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
16 metnrmlem.2 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
17 metnrmlem.4 . . . . . . . . . 10  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
1815, 3, 2, 16, 7, 17metnrmlem1a 18378 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <  ( F `  t )  /\  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR+ )
)
1918simprd 449 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR+ )
2019rphalfcld 10418 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 )  e.  RR+ )
2120rpxrd 10407 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 )  e.  RR* )
223blopn 18062 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  t  e.  X  /\  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR* )  ->  ( t (
ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )
236, 14, 21, 22syl3anc 1182 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )
2423ralrimiva 2639 . . . 4  |-  ( ph  ->  A. t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )  e.  J )
25 iunopn 16660 . . . 4  |-  ( ( J  e.  Top  /\  A. t  e.  T  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )  ->  U_ t  e.  T  ( t
( ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )
265, 24, 25syl2anc 642 . . 3  |-  ( ph  ->  U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )  e.  J )
271, 26syl5eqel 2380 . 2  |-  ( ph  ->  U  e.  J )
28 blcntr 17980 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  t  e.  X  /\  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR+ )  ->  t  e.  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
296, 14, 20, 28syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )
3029snssd 3776 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  { t }  C_  ( t
( ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
3130ralrimiva 2639 . . . 4  |-  ( ph  ->  A. t  e.  T  { t }  C_  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )
32 ss2iun 3936 . . . 4  |-  ( A. t  e.  T  {
t }  C_  (
t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  ->  U_ t  e.  T  { t }  C_  U_ t  e.  T  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
3331, 32syl 15 . . 3  |-  ( ph  ->  U_ t  e.  T  { t }  C_  U_ t  e.  T  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
34 iunid 3973 . . . 4  |-  U_ t  e.  T  { t }  =  T
3534eqcomi 2300 . . 3  |-  T  = 
U_ t  e.  T  { t }
3633, 35, 13sstr4g 3232 . 2  |-  ( ph  ->  T  C_  U )
3727, 36jca 518 1  |-  ( ph  ->  ( U  e.  J  /\  T  C_  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    i^i cin 3164    C_ wss 3165   (/)c0 3468   ifcif 3578   {csn 3653   U.cuni 3843   U_ciun 3921   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   ran crn 4706   ` cfv 5271  (class class class)co 5874   supcsup 7209   0cc0 8753   1c1 8754   RR*cxr 8882    < clt 8883    <_ cle 8884    / cdiv 9439   2c2 9811   RR+crp 10370   * Metcxmt 16385   ballcbl 16387   MetOpencmopn 16388   Topctop 16647   Clsdccld 16769
This theorem is referenced by:  metnrmlem3  18381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-topgen 13360  df-xmet 16389  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cld 16772  df-ntr 16773  df-cls 16774
  Copyright terms: Public domain W3C validator