MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metres Unicode version

Theorem metres 18352
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )

Proof of Theorem metres
StepHypRef Expression
1 metf 18317 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 fdm 5558 . . 3  |-  ( D : ( X  X.  X ) --> RR  ->  dom 
D  =  ( X  X.  X ) )
3 metreslem 18349 . . 3  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
41, 2, 33syl 19 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) ) )
5 inss1 3525 . . 3  |-  ( X  i^i  R )  C_  X
6 metres2 18350 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( X  i^i  R )  C_  X )  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )  e.  ( Met `  ( X  i^i  R ) ) )
75, 6mpan2 653 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) )  e.  ( Met `  ( X  i^i  R
) ) )
84, 7eqeltrd 2482 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721    i^i cin 3283    C_ wss 3284    X. cxp 4839   dom cdm 4841    |` cres 4843   -->wf 5413   ` cfv 5417   RRcr 8949   Metcme 16646
This theorem is referenced by:  ressms  18513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-mulcl 9012  ax-i2m1 9018
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-xadd 10671  df-xmet 16654  df-met 16655
  Copyright terms: Public domain W3C validator