MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metres Structured version   Unicode version

Theorem metres 18400
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )

Proof of Theorem metres
StepHypRef Expression
1 metf 18365 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 fdm 5598 . . 3  |-  ( D : ( X  X.  X ) --> RR  ->  dom 
D  =  ( X  X.  X ) )
3 metreslem 18397 . . 3  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
41, 2, 33syl 19 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) ) )
5 inss1 3563 . . 3  |-  ( X  i^i  R )  C_  X
6 metres2 18398 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( X  i^i  R )  C_  X )  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )  e.  ( Met `  ( X  i^i  R ) ) )
75, 6mpan2 654 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) )  e.  ( Met `  ( X  i^i  R
) ) )
84, 7eqeltrd 2512 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322    X. cxp 4879   dom cdm 4881    |` cres 4883   -->wf 5453   ` cfv 5457   RRcr 8994   Metcme 16692
This theorem is referenced by:  ressms  18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-mulcl 9057  ax-i2m1 9063
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-xadd 10716  df-xmet 16700  df-met 16701
  Copyright terms: Public domain W3C validator