MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmlrid Unicode version

Theorem mgmlrid 14405
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
mndidcl.b  |-  B  =  ( Base `  G
)
mndidcl.o  |-  .0.  =  ( 0g `  G )
mgmidcl.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
mgmlrid  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x   
x, X
Allowed substitution hints:    ph( x, e)    X( e)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2296 . . . 4  |-  .0.  =  .0.
2 mndidcl.b . . . . 5  |-  B  =  ( Base `  G
)
3 mndidcl.o . . . . 5  |-  .0.  =  ( 0g `  G )
4 mgmidcl.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
62, 3, 4, 5ismgmid 14403 . . . 4  |-  ( ph  ->  ( (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )  <->  .0.  =  .0.  ) )
71, 6mpbiri 224 . . 3  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
87simprd 449 . 2  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
9 oveq2 5882 . . . . 5  |-  ( x  =  X  ->  (  .0.  .+  x )  =  (  .0.  .+  X
) )
10 id 19 . . . . 5  |-  ( x  =  X  ->  x  =  X )
119, 10eqeq12d 2310 . . . 4  |-  ( x  =  X  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  X )  =  X ) )
12 oveq1 5881 . . . . 5  |-  ( x  =  X  ->  (
x  .+  .0.  )  =  ( X  .+  .0.  ) )
1312, 10eqeq12d 2310 . . . 4  |-  ( x  =  X  ->  (
( x  .+  .0.  )  =  x  <->  ( X  .+  .0.  )  =  X ) )
1411, 13anbi12d 691 . . 3  |-  ( x  =  X  ->  (
( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  <->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X
) ) )
1514rspccva 2896 . 2  |-  ( ( A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
168, 15sylan 457 1  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416
This theorem is referenced by:  mndlrid  14408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420
  Copyright terms: Public domain W3C validator