MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Unicode version

Theorem mgpress 15336
Description: Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mgpress.1  |-  S  =  ( Rs  A )
mgpress.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgpress  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3  |-  M  =  (mulGrp `  R )
2 simpr 447 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  ( Base `  R )  C_  A
)
3 fvex 5539 . . . . . 6  |-  (mulGrp `  R )  e.  _V
41, 3eqeltri 2353 . . . . 5  |-  M  e. 
_V
54a1i 10 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  M  e.  _V )
6 simplr 731 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  A  e.  W )
7 eqid 2283 . . . . 5  |-  ( Ms  A )  =  ( Ms  A )
8 eqid 2283 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
91, 8mgpbas 15331 . . . . 5  |-  ( Base `  R )  =  (
Base `  M )
107, 9ressid2 13196 . . . 4  |-  ( ( ( Base `  R
)  C_  A  /\  M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  M )
112, 5, 6, 10syl3anc 1182 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  ( Ms  A
)  =  M )
12 simpll 730 . . . . 5  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  R  e.  V )
13 mgpress.1 . . . . . 6  |-  S  =  ( Rs  A )
1413, 8ressid2 13196 . . . . 5  |-  ( ( ( Base `  R
)  C_  A  /\  R  e.  V  /\  A  e.  W )  ->  S  =  R )
152, 12, 6, 14syl3anc 1182 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  S  =  R )
1615fveq2d 5529 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  (mulGrp `  S
)  =  (mulGrp `  R ) )
171, 11, 163eqtr4a 2341 . 2  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  ( Ms  A
)  =  (mulGrp `  S ) )
18 eqid 2283 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
191, 18mgpval 15328 . . . 4  |-  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. )
2019oveq1i 5868 . . 3  |-  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )
21 simpr 447 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  -.  ( Base `  R )  C_  A )
224a1i 10 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  M  e.  _V )
23 simplr 731 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  A  e.  W )
247, 9ressval2 13197 . . . 4  |-  ( ( -.  ( Base `  R
)  C_  A  /\  M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
2521, 22, 23, 24syl3anc 1182 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
26 eqid 2283 . . . . . 6  |-  (mulGrp `  S )  =  (mulGrp `  S )
27 eqid 2283 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2826, 27mgpval 15328 . . . . 5  |-  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
29 simpll 730 . . . . . . 7  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  R  e.  V )
3013, 8ressval2 13197 . . . . . . 7  |-  ( ( -.  ( Base `  R
)  C_  A  /\  R  e.  V  /\  A  e.  W )  ->  S  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
3121, 29, 23, 30syl3anc 1182 . . . . . 6  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  S  =  ( R sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
3213, 18ressmulr 13261 . . . . . . . . 9  |-  ( A  e.  W  ->  ( .r `  R )  =  ( .r `  S
) )
3332eqcomd 2288 . . . . . . . 8  |-  ( A  e.  W  ->  ( .r `  S )  =  ( .r `  R
) )
3433ad2antlr 707 . . . . . . 7  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( .r `  S )  =  ( .r `  R
) )
3534opeq2d 3803 . . . . . 6  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  <. ( +g  `  ndx ) ,  ( .r `  S
) >.  =  <. ( +g  `  ndx ) ,  ( .r `  R
) >. )
3631, 35oveq12d 5876 . . . . 5  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. ) sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
)
3728, 36syl5eq 2327 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) )
38 1ne2 9931 . . . . . . 7  |-  1  =/=  2
3938necomi 2528 . . . . . 6  |-  2  =/=  1
40 plusgndx 13242 . . . . . . 7  |-  ( +g  ` 
ndx )  =  2
41 basendx 13193 . . . . . . 7  |-  ( Base `  ndx )  =  1
4240, 41neeq12i 2458 . . . . . 6  |-  ( ( +g  `  ndx )  =/=  ( Base `  ndx ) 
<->  2  =/=  1 )
4339, 42mpbir 200 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
44 fvex 5539 . . . . . 6  |-  ( .r
`  R )  e. 
_V
45 fvex 5539 . . . . . . 7  |-  ( Base `  R )  e.  _V
4645inex2 4156 . . . . . 6  |-  ( A  i^i  ( Base `  R
) )  e.  _V
47 fvex 5539 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  _V
48 fvex 5539 . . . . . . 7  |-  ( Base `  ndx )  e.  _V
4947, 48setscom 13176 . . . . . 6  |-  ( ( ( R  e.  V  /\  ( +g  `  ndx )  =/=  ( Base `  ndx ) )  /\  (
( .r `  R
)  e.  _V  /\  ( A  i^i  ( Base `  R ) )  e.  _V ) )  ->  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
5044, 46, 49mpanr12 666 . . . . 5  |-  ( ( R  e.  V  /\  ( +g  `  ndx )  =/=  ( Base `  ndx ) )  ->  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
)  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. ) sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
)
5129, 43, 50sylancl 643 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
)  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. ) sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
)
5237, 51eqtr4d 2318 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
5320, 25, 523eqtr4a 2341 . 2  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( Ms  A )  =  (mulGrp `  S ) )
5417, 53pm2.61dan 766 1  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    i^i cin 3151    C_ wss 3152   <.cop 3643   ` cfv 5255  (class class class)co 5858   1c1 8738   2c2 9795   ndxcnx 13145   sSet csts 13146   Basecbs 13148   ↾s cress 13149   +g cplusg 13208   .rcmulr 13209  mulGrpcmgp 15325
This theorem is referenced by:  subrgcrng  15549  subrgsubm  15558  resrhm  15574  lgsqrlem1  20580  lgseisenlem4  20591  dchrisum0flblem1  20657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-mgp 15326
  Copyright terms: Public domain W3C validator