MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmco Unicode version

Theorem mhmco 14439
Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
mhmco  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U ) )

Proof of Theorem mhmco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 14419 . . 3  |-  ( F  e.  ( T MndHom  U
)  ->  U  e.  Mnd )
2 mhmrcl1 14418 . . 3  |-  ( G  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
31, 2anim12ci 550 . 2  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( S  e.  Mnd  /\  U  e. 
Mnd ) )
4 eqid 2283 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
5 eqid 2283 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
64, 5mhmf 14420 . . . 4  |-  ( F  e.  ( T MndHom  U
)  ->  F :
( Base `  T ) --> ( Base `  U )
)
7 eqid 2283 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
87, 4mhmf 14420 . . . 4  |-  ( G  e.  ( S MndHom  T
)  ->  G :
( Base `  S ) --> ( Base `  T )
)
9 fco 5398 . . . 4  |-  ( ( F : ( Base `  T ) --> ( Base `  U )  /\  G : ( Base `  S
) --> ( Base `  T
) )  ->  ( F  o.  G ) : ( Base `  S
) --> ( Base `  U
) )
106, 8, 9syl2an 463 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G ) : (
Base `  S ) --> ( Base `  U )
)
11 eqid 2283 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
12 eqid 2283 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
137, 11, 12mhmlin 14422 . . . . . . . . 9  |-  ( ( G  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( G `  ( x ( +g  `  S ) y ) )  =  ( ( G `  x ) ( +g  `  T
) ( G `  y ) ) )
14133expb 1152 . . . . . . . 8  |-  ( ( G  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  (
x ( +g  `  S
) y ) )  =  ( ( G `
 x ) ( +g  `  T ) ( G `  y
) ) )
1514adantll 694 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  (
x ( +g  `  S
) y ) )  =  ( ( G `
 x ) ( +g  `  T ) ( G `  y
) ) )
1615fveq2d 5529 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  ( G `  ( x
( +g  `  S ) y ) ) )  =  ( F `  ( ( G `  x ) ( +g  `  T ) ( G `
 y ) ) ) )
17 simpll 730 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  ->  F  e.  ( T MndHom  U ) )
188ad2antlr 707 . . . . . . . 8  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  ->  G : ( Base `  S
) --> ( Base `  T
) )
19 simprl 732 . . . . . . . 8  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  ->  x  e.  ( Base `  S ) )
20 ffvelrn 5663 . . . . . . . 8  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  x  e.  ( Base `  S
) )  ->  ( G `  x )  e.  ( Base `  T
) )
2118, 19, 20syl2anc 642 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  x
)  e.  ( Base `  T ) )
22 simprr 733 . . . . . . . 8  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
y  e.  ( Base `  S ) )
23 ffvelrn 5663 . . . . . . . 8  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  y  e.  ( Base `  S
) )  ->  ( G `  y )  e.  ( Base `  T
) )
2418, 22, 23syl2anc 642 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  y
)  e.  ( Base `  T ) )
25 eqid 2283 . . . . . . . 8  |-  ( +g  `  U )  =  ( +g  `  U )
264, 12, 25mhmlin 14422 . . . . . . 7  |-  ( ( F  e.  ( T MndHom  U )  /\  ( G `  x )  e.  ( Base `  T
)  /\  ( G `  y )  e.  (
Base `  T )
)  ->  ( F `  ( ( G `  x ) ( +g  `  T ) ( G `
 y ) ) )  =  ( ( F `  ( G `
 x ) ) ( +g  `  U
) ( F `  ( G `  y ) ) ) )
2717, 21, 24, 26syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
( G `  x
) ( +g  `  T
) ( G `  y ) ) )  =  ( ( F `
 ( G `  x ) ) ( +g  `  U ) ( F `  ( G `  y )
) ) )
2816, 27eqtrd 2315 . . . . 5  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  ( G `  ( x
( +g  `  S ) y ) ) )  =  ( ( F `
 ( G `  x ) ) ( +g  `  U ) ( F `  ( G `  y )
) ) )
292adantl 452 . . . . . . 7  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  S  e.  Mnd )
307, 11mndcl 14372 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
31303expb 1152 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S ) ) )  ->  ( x ( +g  `  S ) y )  e.  (
Base `  S )
)
3229, 31sylan 457 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( x ( +g  `  S ) y )  e.  ( Base `  S
) )
33 fvco3 5596 . . . . . 6  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  ( x
( +g  `  S ) y ) )  =  ( F `  ( G `  ( x
( +g  `  S ) y ) ) ) )
3418, 32, 33syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  (
x ( +g  `  S
) y ) )  =  ( F `  ( G `  ( x ( +g  `  S
) y ) ) ) )
35 fvco3 5596 . . . . . . 7  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  x  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  x )  =  ( F `  ( G `  x ) ) )
3618, 19, 35syl2anc 642 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  x
)  =  ( F `
 ( G `  x ) ) )
37 fvco3 5596 . . . . . . 7  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  y  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
3818, 22, 37syl2anc 642 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  y
)  =  ( F `
 ( G `  y ) ) )
3936, 38oveq12d 5876 . . . . 5  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( ( F  o.  G ) `  x ) ( +g  `  U ) ( ( F  o.  G ) `
 y ) )  =  ( ( F `
 ( G `  x ) ) ( +g  `  U ) ( F `  ( G `  y )
) ) )
4028, 34, 393eqtr4d 2325 . . . 4  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  (
x ( +g  `  S
) y ) )  =  ( ( ( F  o.  G ) `
 x ) ( +g  `  U ) ( ( F  o.  G ) `  y
) ) )
4140ralrimivva 2635 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( ( F  o.  G ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  o.  G
) `  x )
( +g  `  U ) ( ( F  o.  G ) `  y
) ) )
428adantl 452 . . . . 5  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  G :
( Base `  S ) --> ( Base `  T )
)
43 eqid 2283 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
447, 43mndidcl 14391 . . . . . 6  |-  ( S  e.  Mnd  ->  ( 0g `  S )  e.  ( Base `  S
) )
4529, 44syl 15 . . . . 5  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( 0g `  S )  e.  (
Base `  S )
)
46 fvco3 5596 . . . . 5  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  ( 0g `  S )  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  ( 0g `  S ) )  =  ( F `  ( G `  ( 0g `  S ) ) ) )
4742, 45, 46syl2anc 642 . . . 4  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( ( F  o.  G ) `  ( 0g `  S
) )  =  ( F `  ( G `
 ( 0g `  S ) ) ) )
48 eqid 2283 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
4943, 48mhm0 14423 . . . . . 6  |-  ( G  e.  ( S MndHom  T
)  ->  ( G `  ( 0g `  S
) )  =  ( 0g `  T ) )
5049adantl 452 . . . . 5  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( G `  ( 0g `  S
) )  =  ( 0g `  T ) )
5150fveq2d 5529 . . . 4  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F `  ( G `  ( 0g `  S ) ) )  =  ( F `
 ( 0g `  T ) ) )
52 eqid 2283 . . . . . 6  |-  ( 0g
`  U )  =  ( 0g `  U
)
5348, 52mhm0 14423 . . . . 5  |-  ( F  e.  ( T MndHom  U
)  ->  ( F `  ( 0g `  T
) )  =  ( 0g `  U ) )
5453adantr 451 . . . 4  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  T
) )  =  ( 0g `  U ) )
5547, 51, 543eqtrd 2319 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( ( F  o.  G ) `  ( 0g `  S
) )  =  ( 0g `  U ) )
5610, 41, 553jca 1132 . 2  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( ( F  o.  G ) : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( ( F  o.  G ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  o.  G
) `  x )
( +g  `  U ) ( ( F  o.  G ) `  y
) )  /\  (
( F  o.  G
) `  ( 0g `  S ) )  =  ( 0g `  U
) ) )
577, 5, 11, 25, 43, 52ismhm 14417 . 2  |-  ( ( F  o.  G )  e.  ( S MndHom  U
)  <->  ( ( S  e.  Mnd  /\  U  e.  Mnd )  /\  (
( F  o.  G
) : ( Base `  S ) --> ( Base `  U )  /\  A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S
) ( ( F  o.  G ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  o.  G
) `  x )
( +g  `  U ) ( ( F  o.  G ) `  y
) )  /\  (
( F  o.  G
) `  ( 0g `  S ) )  =  ( 0g `  U
) ) ) )
583, 56, 57sylanbrc 645 1  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Mndcmnd 14361   MndHom cmhm 14413
This theorem is referenced by:  ghmco  14702  rhmco  15509  lgseisenlem4  20591
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-map 6774  df-0g 13404  df-mnd 14367  df-mhm 14415
  Copyright terms: Public domain W3C validator