MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmmulg Unicode version

Theorem mhmmulg 14599
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mhmmulg.b  |-  B  =  ( Base `  G
)
mhmmulg.s  |-  .x.  =  (.g
`  G )
mhmmulg.t  |-  .X.  =  (.g
`  H )
Assertion
Ref Expression
mhmmulg  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )

Proof of Theorem mhmmulg
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . . . . 7  |-  ( n  =  0  ->  (
n  .x.  X )  =  ( 0  .x. 
X ) )
21fveq2d 5529 . . . . . 6  |-  ( n  =  0  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
0  .x.  X )
) )
3 oveq1 5865 . . . . . 6  |-  ( n  =  0  ->  (
n  .X.  ( F `  X ) )  =  ( 0  .X.  ( F `  X )
) )
42, 3eqeq12d 2297 . . . . 5  |-  ( n  =  0  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( 0  .x.  X
) )  =  ( 0  .X.  ( F `  X ) ) ) )
54imbi2d 307 . . . 4  |-  ( n  =  0  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( 0  .x.  X
) )  =  ( 0  .X.  ( F `  X ) ) ) ) )
6 oveq1 5865 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  X )  =  ( m  .x.  X ) )
76fveq2d 5529 . . . . . 6  |-  ( n  =  m  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
m  .x.  X )
) )
8 oveq1 5865 . . . . . 6  |-  ( n  =  m  ->  (
n  .X.  ( F `  X ) )  =  ( m  .X.  ( F `  X )
) )
97, 8eqeq12d 2297 . . . . 5  |-  ( n  =  m  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( m  .x.  X
) )  =  ( m  .X.  ( F `  X ) ) ) )
109imbi2d 307 . . . 4  |-  ( n  =  m  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( m  .x.  X
) )  =  ( m  .X.  ( F `  X ) ) ) ) )
11 oveq1 5865 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  X )  =  ( ( m  +  1 )  .x.  X ) )
1211fveq2d 5529 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
( m  +  1 )  .x.  X ) ) )
13 oveq1 5865 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
n  .X.  ( F `  X ) )  =  ( ( m  + 
1 )  .X.  ( F `  X )
) )
1412, 13eqeq12d 2297 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) )
1514imbi2d 307 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) ) )
16 oveq1 5865 . . . . . . 7  |-  ( n  =  N  ->  (
n  .x.  X )  =  ( N  .x.  X ) )
1716fveq2d 5529 . . . . . 6  |-  ( n  =  N  ->  ( F `  ( n  .x.  X ) )  =  ( F `  ( N  .x.  X ) ) )
18 oveq1 5865 . . . . . 6  |-  ( n  =  N  ->  (
n  .X.  ( F `  X ) )  =  ( N  .X.  ( F `  X )
) )
1917, 18eqeq12d 2297 . . . . 5  |-  ( n  =  N  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( N  .x.  X
) )  =  ( N  .X.  ( F `  X ) ) ) )
2019imbi2d 307 . . . 4  |-  ( n  =  N  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( N  .x.  X
) )  =  ( N  .X.  ( F `  X ) ) ) ) )
21 eqid 2283 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
22 eqid 2283 . . . . . . 7  |-  ( 0g
`  H )  =  ( 0g `  H
)
2321, 22mhm0 14423 . . . . . 6  |-  ( F  e.  ( G MndHom  H
)  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
2423adantr 451 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H
) )
25 mhmmulg.b . . . . . . . 8  |-  B  =  ( Base `  G
)
26 mhmmulg.s . . . . . . . 8  |-  .x.  =  (.g
`  G )
2725, 21, 26mulg0 14572 . . . . . . 7  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2827adantl 452 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2928fveq2d 5529 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0  .x.  X ) )  =  ( F `  ( 0g `  G ) ) )
30 eqid 2283 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
3125, 30mhmf 14420 . . . . . . 7  |-  ( F  e.  ( G MndHom  H
)  ->  F : B
--> ( Base `  H
) )
32 ffvelrn 5663 . . . . . . 7  |-  ( ( F : B --> ( Base `  H )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  H
) )
3331, 32sylan 457 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  H
) )
34 mhmmulg.t . . . . . . 7  |-  .X.  =  (.g
`  H )
3530, 22, 34mulg0 14572 . . . . . 6  |-  ( ( F `  X )  e.  ( Base `  H
)  ->  ( 0 
.X.  ( F `  X ) )  =  ( 0g `  H
) )
3633, 35syl 15 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
0  .X.  ( F `  X ) )  =  ( 0g `  H
) )
3724, 29, 363eqtr4d 2325 . . . 4  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0  .x.  X ) )  =  ( 0  .X.  ( F `  X )
) )
38 oveq1 5865 . . . . . . 7  |-  ( ( F `  ( m 
.x.  X ) )  =  ( m  .X.  ( F `  X ) )  ->  ( ( F `  ( m  .x.  X ) ) ( +g  `  H ) ( F `  X
) )  =  ( ( m  .X.  ( F `  X )
) ( +g  `  H
) ( F `  X ) ) )
39 mhmrcl1 14418 . . . . . . . . . . . 12  |-  ( F  e.  ( G MndHom  H
)  ->  G  e.  Mnd )
4039ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  G  e.  Mnd )
41 simpr 447 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  m  e.  NN0 )
42 simplr 731 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  X  e.  B
)
43 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4425, 26, 43mulgnn0p1 14578 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  m  e.  NN0  /\  X  e.  B )  ->  (
( m  +  1 )  .x.  X )  =  ( ( m 
.x.  X ) ( +g  `  G ) X ) )
4540, 41, 42, 44syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( m  +  1 )  .x.  X )  =  ( ( m  .x.  X
) ( +g  `  G
) X ) )
4645fveq2d 5529 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( F `  ( ( m  .x.  X ) ( +g  `  G
) X ) ) )
47 simpll 730 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  F  e.  ( G MndHom  H ) )
4839ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  G  e.  Mnd )
49 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  m  e.  NN0 )
50 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  X  e.  B )
5125, 26mulgnn0cl 14583 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  m  e.  NN0  /\  X  e.  B )  ->  (
m  .x.  X )  e.  B )
5248, 49, 50, 51syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  ( m  .x.  X
)  e.  B )
5352an32s 779 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( m  .x.  X )  e.  B
)
54 eqid 2283 . . . . . . . . . . 11  |-  ( +g  `  H )  =  ( +g  `  H )
5525, 43, 54mhmlin 14422 . . . . . . . . . 10  |-  ( ( F  e.  ( G MndHom  H )  /\  (
m  .x.  X )  e.  B  /\  X  e.  B )  ->  ( F `  ( (
m  .x.  X )
( +g  `  G ) X ) )  =  ( ( F `  ( m  .x.  X ) ) ( +g  `  H
) ( F `  X ) ) )
5647, 53, 42, 55syl3anc 1182 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  .x.  X ) ( +g  `  G ) X ) )  =  ( ( F `  ( m 
.x.  X ) ) ( +g  `  H
) ( F `  X ) ) )
5746, 56eqtrd 2315 . . . . . . . 8  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( F `  (
m  .x.  X )
) ( +g  `  H
) ( F `  X ) ) )
58 mhmrcl2 14419 . . . . . . . . . 10  |-  ( F  e.  ( G MndHom  H
)  ->  H  e.  Mnd )
5958ad2antrr 706 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  H  e.  Mnd )
6033adantr 451 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  X )  e.  (
Base `  H )
)
6130, 34, 54mulgnn0p1 14578 . . . . . . . . 9  |-  ( ( H  e.  Mnd  /\  m  e.  NN0  /\  ( F `  X )  e.  ( Base `  H
) )  ->  (
( m  +  1 )  .X.  ( F `  X ) )  =  ( ( m  .X.  ( F `  X ) ) ( +g  `  H
) ( F `  X ) ) )
6259, 41, 60, 61syl3anc 1182 . . . . . . . 8  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( m  +  1 )  .X.  ( F `  X ) )  =  ( ( m  .X.  ( F `  X ) ) ( +g  `  H ) ( F `  X
) ) )
6357, 62eqeq12d 2297 . . . . . . 7  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( F `
 ( ( m  +  1 )  .x.  X ) )  =  ( ( m  + 
1 )  .X.  ( F `  X )
)  <->  ( ( F `
 ( m  .x.  X ) ) ( +g  `  H ) ( F `  X
) )  =  ( ( m  .X.  ( F `  X )
) ( +g  `  H
) ( F `  X ) ) ) )
6438, 63syl5ibr 212 . . . . . 6  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( F `
 ( m  .x.  X ) )  =  ( m  .X.  ( F `  X )
)  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) )
6564expcom 424 . . . . 5  |-  ( m  e.  NN0  ->  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
( F `  (
m  .x.  X )
)  =  ( m 
.X.  ( F `  X ) )  -> 
( F `  (
( m  +  1 )  .x.  X ) )  =  ( ( m  +  1 ) 
.X.  ( F `  X ) ) ) ) )
6665a2d 23 . . . 4  |-  ( m  e.  NN0  ->  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  (
m  .x.  X )
)  =  ( m 
.X.  ( F `  X ) ) )  ->  ( ( F  e.  ( G MndHom  H
)  /\  X  e.  B )  ->  ( F `  ( (
m  +  1 ) 
.x.  X ) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) ) )
675, 10, 15, 20, 37, 66nn0ind 10108 . . 3  |-  ( N  e.  NN0  ->  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) ) )
68673impib 1149 . 2  |-  ( ( N  e.  NN0  /\  F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
69683com12 1155 1  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   -->wf 5251   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740   NN0cn0 9965   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Mndcmnd 14361  .gcmg 14366   MndHom cmhm 14413
This theorem is referenced by:  pwsmulg  14609  ghmmulg  14695  evl1expd  19421  dchrfi  20494  lgsqrlem1  20580  lgseisenlem4  20591  dchrisum0flblem1  20657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047  df-0g 13404  df-mnd 14367  df-mhm 14415  df-mulg 14492
  Copyright terms: Public domain W3C validator