Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minel Structured version   Unicode version

Theorem minel 3675
 Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3674 . . . . 5
21necon2bi 2644 . . . 4
3 imnan 412 . . . 4
42, 3sylibr 204 . . 3
54con2d 109 . 2
65impcom 420 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   wceq 1652   wcel 1725   cin 3311  c0 3620 This theorem is referenced by:  peano5  4860  fnsuppres  5944  domunfican  7371  unwdomg  7542  dfac5  7999  ccatval2  11736  mreexexlem2d  13860  hauspwpwf1  18009 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-v 2950  df-dif 3315  df-in 3319  df-nul 3621
 Copyright terms: Public domain W3C validator