MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Unicode version

Theorem minveclem1 19186
Description: Lemma for minvec 19198. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
Assertion
Ref Expression
minveclem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w,  .-    w, A, y    w, J, y    w, N, y    ph, w, y    w, R, y    w, U, y   
w, X, y    w, Y, y

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
2 minvec.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil )
3 cphngp 19001 . . . . . . . 8  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  U  e. NrmGrp )
54adantr 452 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e. NrmGrp )
6 cphlmod 19002 . . . . . . . . 9  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
72, 6syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
87adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  LMod )
9 minvec.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
109adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
11 minvec.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
12 minvec.x . . . . . . . . . 10  |-  X  =  ( Base `  U
)
13 eqid 2381 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
1412, 13lssss 15934 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
1511, 14syl 16 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1615sselda 3285 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
17 minvec.m . . . . . . . 8  |-  .-  =  ( -g `  U )
1812, 17lmodvsubcl 15910 . . . . . . 7  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .-  y )  e.  X )
198, 10, 16, 18syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A  .-  y )  e.  X )
20 minvec.n . . . . . . 7  |-  N  =  ( norm `  U
)
2112, 20nmcl 18527 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  ( N `  ( A  .-  y ) )  e.  RR )
225, 19, 21syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  RR )
23 eqid 2381 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
2422, 23fmptd 5826 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) : Y --> RR )
25 frn 5531 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A 
.-  y ) ) ) : Y --> RR  ->  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  C_  RR )
2624, 25syl 16 . . 3  |-  ( ph  ->  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  C_  RR )
271, 26syl5eqss 3329 . 2  |-  ( ph  ->  R  C_  RR )
2813lssn0 15938 . . . 4  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  =/=  (/) )
2911, 28syl 16 . . 3  |-  ( ph  ->  Y  =/=  (/) )
301eqeq1i 2388 . . . . 5  |-  ( R  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  =  (/) )
31 dm0rn0 5020 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  (/) )
32 fvex 5676 . . . . . . 7  |-  ( N `
 ( A  .-  y ) )  e. 
_V
3332, 23dmmpti 5508 . . . . . 6  |-  dom  (
y  e.  Y  |->  ( N `  ( A 
.-  y ) ) )  =  Y
3433eqeq1i 2388 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  =  (/)  <->  Y  =  (/) )
3530, 31, 343bitr2i 265 . . . 4  |-  ( R  =  (/)  <->  Y  =  (/) )
3635necon3bii 2576 . . 3  |-  ( R  =/=  (/)  <->  Y  =/=  (/) )
3729, 36sylibr 204 . 2  |-  ( ph  ->  R  =/=  (/) )
3812, 20nmge0 18528 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  0  <_  ( N `  ( A  .-  y ) ) )
395, 19, 38syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A  .-  y ) ) )
4039ralrimiva 2726 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A  .-  y
) ) )
4132rgenw 2710 . . . . 5  |-  A. y  e.  Y  ( N `  ( A  .-  y
) )  e.  _V
42 breq2 4151 . . . . . 6  |-  ( w  =  ( N `  ( A  .-  y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A 
.-  y ) ) ) )
4323, 42ralrnmpt 5811 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A  .-  y ) )  e. 
_V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) 0  <_  w 
<-> 
A. y  e.  Y 
0  <_  ( N `  ( A  .-  y
) ) ) )
4441, 43ax-mp 8 . . . 4  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A 
.-  y ) ) )
4540, 44sylibr 204 . . 3  |-  ( ph  ->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) 0  <_  w
)
461raleqi 2845 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) 0  <_  w
)
4745, 46sylibr 204 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
4827, 37, 473jca 1134 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2544   A.wral 2643   _Vcvv 2893    C_ wss 3257   (/)c0 3565   class class class wbr 4147    e. cmpt 4201   dom cdm 4812   ran crn 4813   -->wf 5384   ` cfv 5388  (class class class)co 6014   RRcr 8916   0cc0 8917    <_ cle 9048   Basecbs 13390   ↾s cress 13391   TopOpenctopn 13570   -gcsg 14609   LModclmod 15871   LSubSpclss 15929   normcnm 18489  NrmGrpcngp 18490   CPreHilccph 18994  CMetSpccms 19148
This theorem is referenced by:  minveclem4c  19187  minveclem2  19188  minveclem3b  19190  minveclem4  19194  minveclem6  19196
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-rep 4255  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635  ax-cnex 8973  ax-resscn 8974  ax-1cn 8975  ax-icn 8976  ax-addcl 8977  ax-addrcl 8978  ax-mulcl 8979  ax-mulrcl 8980  ax-mulcom 8981  ax-addass 8982  ax-mulass 8983  ax-distr 8984  ax-i2m1 8985  ax-1ne0 8986  ax-1rid 8987  ax-rnegex 8988  ax-rrecex 8989  ax-cnre 8990  ax-pre-lttri 8991  ax-pre-lttrn 8992  ax-pre-ltadd 8993  ax-pre-mulgt0 8994  ax-pre-sup 8995
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-nel 2547  df-ral 2648  df-rex 2649  df-reu 2650  df-rmo 2651  df-rab 2652  df-v 2895  df-sbc 3099  df-csb 3189  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-pss 3273  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-tp 3759  df-op 3760  df-uni 3952  df-iun 4031  df-br 4148  df-opab 4202  df-mpt 4203  df-tr 4238  df-eprel 4429  df-id 4433  df-po 4438  df-so 4439  df-fr 4476  df-we 4478  df-ord 4519  df-on 4520  df-lim 4521  df-suc 4522  df-om 4780  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-iota 5352  df-fun 5390  df-fn 5391  df-f 5392  df-f1 5393  df-fo 5394  df-f1o 5395  df-fv 5396  df-ov 6017  df-oprab 6018  df-mpt2 6019  df-1st 6282  df-2nd 6283  df-riota 6479  df-recs 6563  df-rdg 6598  df-er 6835  df-map 6950  df-en 7040  df-dom 7041  df-sdom 7042  df-sup 7375  df-pnf 9049  df-mnf 9050  df-xr 9051  df-ltxr 9052  df-le 9053  df-sub 9219  df-neg 9220  df-div 9604  df-nn 9927  df-2 9984  df-n0 10148  df-z 10209  df-uz 10415  df-q 10501  df-rp 10539  df-xneg 10636  df-xadd 10637  df-xmul 10638  df-topgen 13588  df-0g 13648  df-mnd 14611  df-grp 14733  df-minusg 14734  df-sbg 14735  df-lmod 15873  df-lss 15930  df-xmet 16613  df-met 16614  df-bl 16615  df-mopn 16616  df-top 16880  df-bases 16882  df-topon 16883  df-topsp 16884  df-xms 18253  df-ms 18254  df-nm 18495  df-ngp 18496  df-nlm 18499  df-cph 18996
  Copyright terms: Public domain W3C validator