MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem2 Unicode version

Theorem minveclem2 18790
Description: Lemma for minvec 18800. Any two points  K and 
L in  Y are close to each other if they are close to the infimum of distance to  A. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minveclem2.1  |-  ( ph  ->  B  e.  RR )
minveclem2.2  |-  ( ph  ->  0  <_  B )
minveclem2.3  |-  ( ph  ->  K  e.  Y )
minveclem2.4  |-  ( ph  ->  L  e.  Y )
minveclem2.5  |-  ( ph  ->  ( ( A D K ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
minveclem2.6  |-  ( ph  ->  ( ( A D L ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
Assertion
Ref Expression
minveclem2  |-  ( ph  ->  ( ( K D L ) ^ 2 )  <_  ( 4  x.  B ) )
Distinct variable groups:    y,  .-    y, A    y, J    y, K    y, N    ph, y    y, R    y, U    y, X    y, Y    y, D    y, S    y, L
Allowed substitution hint:    B( y)

Proof of Theorem minveclem2
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 9819 . . . . . 6  |-  4  e.  RR
2 minvec.x . . . . . . . 8  |-  X  =  ( Base `  U
)
3 minvec.m . . . . . . . 8  |-  .-  =  ( -g `  U )
4 minvec.n . . . . . . . 8  |-  N  =  ( norm `  U
)
5 minvec.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil )
6 minvec.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
7 minvec.w . . . . . . . 8  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
8 minvec.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
9 minvec.j . . . . . . . 8  |-  J  =  ( TopOpen `  U )
10 minvec.r . . . . . . . 8  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
11 minvec.s . . . . . . . 8  |-  S  =  sup ( R ,  RR ,  `'  <  )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 18789 . . . . . . 7  |-  ( ph  ->  S  e.  RR )
1312resqcld 11271 . . . . . 6  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
14 remulcl 8822 . . . . . 6  |-  ( ( 4  e.  RR  /\  ( S ^ 2 )  e.  RR )  -> 
( 4  x.  ( S ^ 2 ) )  e.  RR )
151, 13, 14sylancr 644 . . . . 5  |-  ( ph  ->  ( 4  x.  ( S ^ 2 ) )  e.  RR )
16 cphngp 18609 . . . . . . . . . 10  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
175, 16syl 15 . . . . . . . . 9  |-  ( ph  ->  U  e. NrmGrp )
18 ngpms 18122 . . . . . . . . 9  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
1917, 18syl 15 . . . . . . . 8  |-  ( ph  ->  U  e.  MetSp )
20 minvec.d . . . . . . . . 9  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
212, 20msmet 18003 . . . . . . . 8  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
2219, 21syl 15 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
23 eqid 2283 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
242, 23lssss 15694 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
256, 24syl 15 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
26 minveclem2.3 . . . . . . . 8  |-  ( ph  ->  K  e.  Y )
2725, 26sseldd 3181 . . . . . . 7  |-  ( ph  ->  K  e.  X )
28 minveclem2.4 . . . . . . . 8  |-  ( ph  ->  L  e.  Y )
2925, 28sseldd 3181 . . . . . . 7  |-  ( ph  ->  L  e.  X )
30 metcl 17897 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  K  e.  X  /\  L  e.  X )  ->  ( K D L )  e.  RR )
3122, 27, 29, 30syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( K D L )  e.  RR )
3231resqcld 11271 . . . . 5  |-  ( ph  ->  ( ( K D L ) ^ 2 )  e.  RR )
3315, 32readdcld 8862 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  e.  RR )
34 cphlmod 18610 . . . . . . . . . 10  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
355, 34syl 15 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
36 cphclm 18625 . . . . . . . . . . . . . . 15  |-  ( U  e.  CPreHil  ->  U  e. CMod )
375, 36syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e. CMod )
38 eqid 2283 . . . . . . . . . . . . . . 15  |-  (Scalar `  U )  =  (Scalar `  U )
39 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
4038, 39clmzss 18576 . . . . . . . . . . . . . 14  |-  ( U  e. CMod  ->  ZZ  C_  ( Base `  (Scalar `  U
) ) )
4137, 40syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ZZ  C_  ( Base `  (Scalar `  U )
) )
42 2z 10054 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
4342a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  ZZ )
4441, 43sseldd 3181 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  ( Base `  (Scalar `  U )
) )
45 2ne0 9829 . . . . . . . . . . . . 13  |-  2  =/=  0
4645a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  2  =/=  0 )
4738, 39cphreccl 18617 . . . . . . . . . . . 12  |-  ( ( U  e.  CPreHil  /\  2  e.  ( Base `  (Scalar `  U ) )  /\  2  =/=  0 )  -> 
( 1  /  2
)  e.  ( Base `  (Scalar `  U )
) )
485, 44, 46, 47syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  2
)  e.  ( Base `  (Scalar `  U )
) )
49 eqid 2283 . . . . . . . . . . . . 13  |-  ( +g  `  U )  =  ( +g  `  U )
5049, 23lssvacl 15711 . . . . . . . . . . . 12  |-  ( ( ( U  e.  LMod  /\  Y  e.  ( LSubSp `  U ) )  /\  ( K  e.  Y  /\  L  e.  Y
) )  ->  ( K ( +g  `  U
) L )  e.  Y )
5135, 6, 26, 28, 50syl22anc 1183 . . . . . . . . . . 11  |-  ( ph  ->  ( K ( +g  `  U ) L )  e.  Y )
52 eqid 2283 . . . . . . . . . . . 12  |-  ( .s
`  U )  =  ( .s `  U
)
5338, 52, 39, 23lssvscl 15712 . . . . . . . . . . 11  |-  ( ( ( U  e.  LMod  /\  Y  e.  ( LSubSp `  U ) )  /\  ( ( 1  / 
2 )  e.  (
Base `  (Scalar `  U
) )  /\  ( K ( +g  `  U
) L )  e.  Y ) )  -> 
( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) )  e.  Y )
5435, 6, 48, 51, 53syl22anc 1183 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) )  e.  Y )
5525, 54sseldd 3181 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) )  e.  X )
562, 3lmodvsubcl 15670 . . . . . . . . 9  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  (
( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) )  e.  X )  -> 
( A  .-  (
( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) ) )  e.  X )
5735, 8, 55, 56syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( A  .-  (
( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) ) )  e.  X )
582, 4nmcl 18137 . . . . . . . 8  |-  ( ( U  e. NrmGrp  /\  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) )  e.  X
)  ->  ( N `  ( A  .-  (
( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) ) ) )  e.  RR )
5917, 57, 58syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  e.  RR )
6059resqcld 11271 . . . . . 6  |-  ( ph  ->  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 )  e.  RR )
61 remulcl 8822 . . . . . 6  |-  ( ( 4  e.  RR  /\  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 )  e.  RR )  -> 
( 4  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) )  e.  RR )
621, 60, 61sylancr 644 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) )  e.  RR )
6362, 32readdcld 8862 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  e.  RR )
64 minveclem2.1 . . . . . 6  |-  ( ph  ->  B  e.  RR )
6513, 64readdcld 8862 . . . . 5  |-  ( ph  ->  ( ( S ^
2 )  +  B
)  e.  RR )
66 remulcl 8822 . . . . 5  |-  ( ( 4  e.  RR  /\  ( ( S ^
2 )  +  B
)  e.  RR )  ->  ( 4  x.  ( ( S ^
2 )  +  B
) )  e.  RR )
671, 65, 66sylancr 644 . . . 4  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  e.  RR )
682, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 18788 . . . . . . . . . 10  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
6968simp3d 969 . . . . . . . . 9  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
7068simp1d 967 . . . . . . . . . 10  |-  ( ph  ->  R  C_  RR )
7168simp2d 968 . . . . . . . . . 10  |-  ( ph  ->  R  =/=  (/) )
72 0re 8838 . . . . . . . . . . 11  |-  0  e.  RR
73 breq1 4026 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
7473ralbidv 2563 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
7574rspcev 2884 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
7672, 69, 75sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
7772a1i 10 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
78 infmrgelb 9734 . . . . . . . . . 10  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
7970, 71, 76, 77, 78syl31anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
8069, 79mpbird 223 . . . . . . . 8  |-  ( ph  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
8180, 11syl6breqr 4063 . . . . . . 7  |-  ( ph  ->  0  <_  S )
82 eqid 2283 . . . . . . . . . . . 12  |-  ( N `
 ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )  =  ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )
83 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) )  ->  ( A  .-  y )  =  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) )
8483fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) )  ->  ( N `  ( A  .-  y
) )  =  ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) )
8584eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) )  ->  ( ( N `  ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )  =  ( N `  ( A 
.-  y ) )  <-> 
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  =  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) )
8685rspcev 2884 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) )  e.  Y  /\  ( N `  ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )  =  ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) )  ->  E. y  e.  Y  ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  =  ( N `  ( A  .-  y ) ) )
8754, 82, 86sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  E. y  e.  Y  ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  =  ( N `  ( A  .-  y ) ) )
88 eqid 2283 . . . . . . . . . . . 12  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
89 fvex 5539 . . . . . . . . . . . 12  |-  ( N `
 ( A  .-  y ) )  e. 
_V
9088, 89elrnmpti 4930 . . . . . . . . . . 11  |-  ( ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  e. 
ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  <->  E. y  e.  Y  ( N `  ( A  .-  (
( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) ) ) )  =  ( N `  ( A 
.-  y ) ) )
9187, 90sylibr 203 . . . . . . . . . 10  |-  ( ph  ->  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  e. 
ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) )
9291, 10syl6eleqr 2374 . . . . . . . . 9  |-  ( ph  ->  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  e.  R )
93 infmrlb 9735 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) )  e.  R )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) )
9470, 76, 92, 93syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) )
9511, 94syl5eqbr 4056 . . . . . . 7  |-  ( ph  ->  S  <_  ( N `  ( A  .-  (
( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) ) ) ) )
96 le2sq2 11179 . . . . . . 7  |-  ( ( ( S  e.  RR  /\  0  <_  S )  /\  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) )  e.  RR  /\  S  <_  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ) )  -> 
( S ^ 2 )  <_  ( ( N `  ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) ^ 2 ) )
9712, 81, 59, 95, 96syl22anc 1183 . . . . . 6  |-  ( ph  ->  ( S ^ 2 )  <_  ( ( N `  ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) ^ 2 ) )
98 4pos 9832 . . . . . . . . 9  |-  0  <  4
991, 98pm3.2i 441 . . . . . . . 8  |-  ( 4  e.  RR  /\  0  <  4 )
100 lemul2 9609 . . . . . . . 8  |-  ( ( ( S ^ 2 )  e.  RR  /\  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 )  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( S ^ 2 )  <_ 
( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 )  <-> 
( 4  x.  ( S ^ 2 ) )  <_  ( 4  x.  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 ) ) ) )
10199, 100mp3an3 1266 . . . . . . 7  |-  ( ( ( S ^ 2 )  e.  RR  /\  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 )  e.  RR )  -> 
( ( S ^
2 )  <_  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 )  <->  ( 4  x.  ( S ^
2 ) )  <_ 
( 4  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) ) ) )
10213, 60, 101syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( S ^
2 )  <_  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 )  <->  ( 4  x.  ( S ^
2 ) )  <_ 
( 4  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) ) ) )
10397, 102mpbid 201 . . . . 5  |-  ( ph  ->  ( 4  x.  ( S ^ 2 ) )  <_  ( 4  x.  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 ) ) )
10415, 62, 32, 103leadd1dd 9386 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) )  +  ( ( K D L ) ^ 2 ) ) )
105 metcl 17897 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  K  e.  X )  ->  ( A D K )  e.  RR )
10622, 8, 27, 105syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( A D K )  e.  RR )
107106resqcld 11271 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  e.  RR )
108 metcl 17897 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  L  e.  X )  ->  ( A D L )  e.  RR )
10922, 8, 29, 108syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( A D L )  e.  RR )
110109resqcld 11271 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  e.  RR )
111 minveclem2.5 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
112 minveclem2.6 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
113107, 110, 65, 65, 111, 112le2addd 9390 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( (
( S ^ 2 )  +  B )  +  ( ( S ^ 2 )  +  B ) ) )
11465recnd 8861 . . . . . . . 8  |-  ( ph  ->  ( ( S ^
2 )  +  B
)  e.  CC )
1151142timesd 9954 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( S ^ 2 )  +  B ) )  =  ( ( ( S ^ 2 )  +  B )  +  ( ( S ^ 2 )  +  B ) ) )
116113, 115breqtrrd 4049 . . . . . 6  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( 2  x.  ( ( S ^ 2 )  +  B ) ) )
117107, 110readdcld 8862 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR )
118 2re 9815 . . . . . . . 8  |-  2  e.  RR
119 remulcl 8822 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( S ^
2 )  +  B
)  e.  RR )  ->  ( 2  x.  ( ( S ^
2 )  +  B
) )  e.  RR )
120118, 65, 119sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR )
121 2pos 9828 . . . . . . . . 9  |-  0  <  2
122118, 121pm3.2i 441 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
123 lemul2 9609 . . . . . . . 8  |-  ( ( ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR  /\  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( 2  x.  ( ( S ^
2 )  +  B
) )  <->  ( 2  x.  ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_ 
( 2  x.  (
2  x.  ( ( S ^ 2 )  +  B ) ) ) ) )
124122, 123mp3an3 1266 . . . . . . 7  |-  ( ( ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR  /\  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR )  ->  ( ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^
2 ) )  <_ 
( 2  x.  (
( S ^ 2 )  +  B ) )  <->  ( 2  x.  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  (
2  x.  ( 2  x.  ( ( S ^ 2 )  +  B ) ) ) ) )
125117, 120, 124syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) )  <_  (
2  x.  ( ( S ^ 2 )  +  B ) )  <-> 
( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) ) )
126116, 125mpbid 201 . . . . 5  |-  ( ph  ->  ( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
1272, 3lmodvsubcl 15670 . . . . . . . 8  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  K  e.  X )  ->  ( A  .-  K )  e.  X )
12835, 8, 27, 127syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( A  .-  K
)  e.  X )
1292, 3lmodvsubcl 15670 . . . . . . . 8  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  L  e.  X )  ->  ( A  .-  L )  e.  X )
13035, 8, 29, 129syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( A  .-  L
)  e.  X )
1312, 49, 3, 4nmpar 18670 . . . . . . 7  |-  ( ( U  e.  CPreHil  /\  ( A  .-  K )  e.  X  /\  ( A 
.-  L )  e.  X )  ->  (
( ( N `  ( ( A  .-  K ) ( +g  `  U ) ( A 
.-  L ) ) ) ^ 2 )  +  ( ( N `
 ( ( A 
.-  K )  .-  ( A  .-  L ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  ( A  .-  K ) ) ^ 2 )  +  ( ( N `  ( A  .-  L ) ) ^ 2 ) ) ) )
1325, 128, 130, 131syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( ( N `
 ( ( A 
.-  K ) ( +g  `  U ) ( A  .-  L
) ) ) ^
2 )  +  ( ( N `  (
( A  .-  K
)  .-  ( A  .-  L ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A  .-  K ) ) ^
2 )  +  ( ( N `  ( A  .-  L ) ) ^ 2 ) ) ) )
133 2cn 9816 . . . . . . . . . 10  |-  2  e.  CC
13459recnd 8861 . . . . . . . . . 10  |-  ( ph  ->  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  e.  CC )
135 sqmul 11167 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) )  e.  CC )  ->  (
( 2  x.  ( N `  ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) ) )
136133, 134, 135sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) ) )
137 sq2 11199 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
138137oveq1i 5868 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  x.  ( ( N `
 ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) ^ 2 ) )  =  ( 4  x.  ( ( N `  ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) )
139136, 138syl6eq 2331 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) ^ 2 )  =  ( 4  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) ) )
1402, 4, 52, 38, 39cphnmvs 18626 . . . . . . . . . . . 12  |-  ( ( U  e.  CPreHil  /\  2  e.  ( Base `  (Scalar `  U ) )  /\  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) )  e.  X )  -> 
( N `  (
2 ( .s `  U ) ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) )  =  ( ( abs `  2 )  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) )
1415, 44, 57, 140syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  (
2 ( .s `  U ) ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) )  =  ( ( abs `  2 )  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) )
14272, 118, 121ltleii 8941 . . . . . . . . . . . . 13  |-  0  <_  2
143 absid 11781 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
144118, 142, 143mp2an 653 . . . . . . . . . . . 12  |-  ( abs `  2 )  =  2
145144oveq1i 5868 . . . . . . . . . . 11  |-  ( ( abs `  2 )  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) )  =  ( 2  x.  ( N `
 ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) )
146141, 145syl6eq 2331 . . . . . . . . . 10  |-  ( ph  ->  ( N `  (
2 ( .s `  U ) ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) )  =  ( 2  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) )
1472, 52, 38, 39, 3, 35, 44, 8, 55lmodsubdi 15682 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2 ( .s
`  U ) ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) )  =  ( ( 2 ( .s `  U ) A ) 
.-  ( 2 ( .s `  U ) ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) )
148 eqid 2283 . . . . . . . . . . . . . . . 16  |-  (.g `  U
)  =  (.g `  U
)
1492, 148, 49mulg2 14576 . . . . . . . . . . . . . . 15  |-  ( A  e.  X  ->  (
2 (.g `  U ) A )  =  ( A ( +g  `  U
) A ) )
1508, 149syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2 (.g `  U
) A )  =  ( A ( +g  `  U ) A ) )
1512, 148, 52clmmulg 18591 . . . . . . . . . . . . . . 15  |-  ( ( U  e. CMod  /\  2  e.  ZZ  /\  A  e.  X )  ->  (
2 (.g `  U ) A )  =  ( 2 ( .s `  U
) A ) )
15237, 43, 8, 151syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2 (.g `  U
) A )  =  ( 2 ( .s
`  U ) A ) )
153150, 152eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ( +g  `  U ) A )  =  ( 2 ( .s `  U ) A ) )
1542, 49lmodvacl 15641 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  K  e.  X  /\  L  e.  X )  ->  ( K ( +g  `  U
) L )  e.  X )
15535, 27, 29, 154syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( K ( +g  `  U ) L )  e.  X )
1562, 52clmvs1 18587 . . . . . . . . . . . . . . 15  |-  ( ( U  e. CMod  /\  ( K ( +g  `  U
) L )  e.  X )  ->  (
1 ( .s `  U ) ( K ( +g  `  U
) L ) )  =  ( K ( +g  `  U ) L ) )
15737, 155, 156syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ( .s
`  U ) ( K ( +g  `  U
) L ) )  =  ( K ( +g  `  U ) L ) )
158133, 45recidi 9491 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
159158oveq1i 5868 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  ( 1  /  2 ) ) ( .s `  U
) ( K ( +g  `  U ) L ) )  =  ( 1 ( .s
`  U ) ( K ( +g  `  U
) L ) )
1602, 38, 52, 39clmvsass 18585 . . . . . . . . . . . . . . . 16  |-  ( ( U  e. CMod  /\  (
2  e.  ( Base `  (Scalar `  U )
)  /\  ( 1  /  2 )  e.  ( Base `  (Scalar `  U ) )  /\  ( K ( +g  `  U
) L )  e.  X ) )  -> 
( ( 2  x.  ( 1  /  2
) ) ( .s
`  U ) ( K ( +g  `  U
) L ) )  =  ( 2 ( .s `  U ) ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )
16137, 44, 48, 155, 160syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  ( 1  /  2
) ) ( .s
`  U ) ( K ( +g  `  U
) L ) )  =  ( 2 ( .s `  U ) ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )
162159, 161syl5eqr 2329 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ( .s
`  U ) ( K ( +g  `  U
) L ) )  =  ( 2 ( .s `  U ) ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )
163157, 162eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +g  `  U ) L )  =  ( 2 ( .s `  U ) ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) )
164153, 163oveq12d 5876 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ( +g  `  U ) A )  .-  ( K ( +g  `  U
) L ) )  =  ( ( 2 ( .s `  U
) A )  .-  ( 2 ( .s
`  U ) ( ( 1  /  2
) ( .s `  U ) ( K ( +g  `  U
) L ) ) ) ) )
165 lmodabl 15672 . . . . . . . . . . . . . 14  |-  ( U  e.  LMod  ->  U  e. 
Abel )
16635, 165syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  Abel )
1672, 49, 3ablsub4 15114 . . . . . . . . . . . . 13  |-  ( ( U  e.  Abel  /\  ( A  e.  X  /\  A  e.  X )  /\  ( K  e.  X  /\  L  e.  X
) )  ->  (
( A ( +g  `  U ) A ) 
.-  ( K ( +g  `  U ) L ) )  =  ( ( A  .-  K ) ( +g  `  U ) ( A 
.-  L ) ) )
168166, 8, 8, 27, 29, 167syl122anc 1191 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ( +g  `  U ) A )  .-  ( K ( +g  `  U
) L ) )  =  ( ( A 
.-  K ) ( +g  `  U ) ( A  .-  L
) ) )
169147, 164, 1683eqtr2d 2321 . . . . . . . . . . 11  |-  ( ph  ->  ( 2 ( .s
`  U ) ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) )  =  ( ( A  .-  K ) ( +g  `  U
) ( A  .-  L ) ) )
170169fveq2d 5529 . . . . . . . . . 10  |-  ( ph  ->  ( N `  (
2 ( .s `  U ) ( A 
.-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) )  =  ( N `  ( ( A  .-  K ) ( +g  `  U ) ( A 
.-  L ) ) ) )
171146, 170eqtr3d 2317 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( N `  ( A  .-  ( ( 1  / 
2 ) ( .s
`  U ) ( K ( +g  `  U
) L ) ) ) ) )  =  ( N `  (
( A  .-  K
) ( +g  `  U
) ( A  .-  L ) ) ) )
172171oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ) ^ 2 )  =  ( ( N `  ( ( A  .-  K ) ( +g  `  U ) ( A 
.-  L ) ) ) ^ 2 ) )
173139, 172eqtr3d 2317 . . . . . . 7  |-  ( ph  ->  ( 4  x.  (
( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U ) ( K ( +g  `  U ) L ) ) ) ) ^
2 ) )  =  ( ( N `  ( ( A  .-  K ) ( +g  `  U ) ( A 
.-  L ) ) ) ^ 2 ) )
174 eqid 2283 . . . . . . . . . . 11  |-  ( dist `  U )  =  (
dist `  U )
1754, 2, 3, 174ngpdsr 18126 . . . . . . . . . 10  |-  ( ( U  e. NrmGrp  /\  K  e.  X  /\  L  e.  X )  ->  ( K ( dist `  U
) L )  =  ( N `  ( L  .-  K ) ) )
17617, 27, 29, 175syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( K ( dist `  U ) L )  =  ( N `  ( L  .-  K ) ) )
17720oveqi 5871 . . . . . . . . . 10  |-  ( K D L )  =  ( K ( (
dist `  U )  |`  ( X  X.  X
) ) L )
17827, 29ovresd 5988 . . . . . . . . . 10  |-  ( ph  ->  ( K ( (
dist `  U )  |`  ( X  X.  X
) ) L )  =  ( K (
dist `  U ) L ) )
179177, 178syl5eq 2327 . . . . . . . . 9  |-  ( ph  ->  ( K D L )  =  ( K ( dist `  U
) L ) )
1802, 3, 166, 8, 27, 29ablnnncan1 15124 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  .-  K )  .-  ( A  .-  L ) )  =  ( L  .-  K ) )
181180fveq2d 5529 . . . . . . . . 9  |-  ( ph  ->  ( N `  (
( A  .-  K
)  .-  ( A  .-  L ) ) )  =  ( N `  ( L  .-  K ) ) )
182176, 179, 1813eqtr4d 2325 . . . . . . . 8  |-  ( ph  ->  ( K D L )  =  ( N `
 ( ( A 
.-  K )  .-  ( A  .-  L ) ) ) )
183182oveq1d 5873 . . . . . . 7  |-  ( ph  ->  ( ( K D L ) ^ 2 )  =  ( ( N `  ( ( A  .-  K ) 
.-  ( A  .-  L ) ) ) ^ 2 ) )
184173, 183oveq12d 5876 . . . . . 6  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  =  ( ( ( N `  ( ( A  .-  K ) ( +g  `  U
) ( A  .-  L ) ) ) ^ 2 )  +  ( ( N `  ( ( A  .-  K )  .-  ( A  .-  L ) ) ) ^ 2 ) ) )
18520oveqi 5871 . . . . . . . . . . 11  |-  ( A D K )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) K )
1868, 27ovresd 5988 . . . . . . . . . . 11  |-  ( ph  ->  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) K )  =  ( A (
dist `  U ) K ) )
187185, 186syl5eq 2327 . . . . . . . . . 10  |-  ( ph  ->  ( A D K )  =  ( A ( dist `  U
) K ) )
1884, 2, 3, 174ngpds 18125 . . . . . . . . . . 11  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  K  e.  X )  ->  ( A ( dist `  U
) K )  =  ( N `  ( A  .-  K ) ) )
18917, 8, 27, 188syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( A ( dist `  U ) K )  =  ( N `  ( A  .-  K ) ) )
190187, 189eqtrd 2315 . . . . . . . . 9  |-  ( ph  ->  ( A D K )  =  ( N `
 ( A  .-  K ) ) )
191190oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  =  ( ( N `  ( A 
.-  K ) ) ^ 2 ) )
19220oveqi 5871 . . . . . . . . . . 11  |-  ( A D L )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) L )
1938, 29ovresd 5988 . . . . . . . . . . 11  |-  ( ph  ->  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) L )  =  ( A (
dist `  U ) L ) )
194192, 193syl5eq 2327 . . . . . . . . . 10  |-  ( ph  ->  ( A D L )  =  ( A ( dist `  U
) L ) )
1954, 2, 3, 174ngpds 18125 . . . . . . . . . . 11  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  L  e.  X )  ->  ( A ( dist `  U
) L )  =  ( N `  ( A  .-  L ) ) )
19617, 8, 29, 195syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( A ( dist `  U ) L )  =  ( N `  ( A  .-  L ) ) )
197194, 196eqtrd 2315 . . . . . . . . 9  |-  ( ph  ->  ( A D L )  =  ( N `
 ( A  .-  L ) ) )
198197oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  =  ( ( N `  ( A 
.-  L ) ) ^ 2 ) )
199191, 198oveq12d 5876 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  =  ( ( ( N `  ( A  .-  K ) ) ^ 2 )  +  ( ( N `  ( A  .-  L ) ) ^ 2 ) ) )
200199oveq2d 5874 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A 
.-  K ) ) ^ 2 )  +  ( ( N `  ( A  .-  L ) ) ^ 2 ) ) ) )
201132, 184, 2003eqtr4d 2325 . . . . 5  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  =  ( 2  x.  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) ) ) )
202 2t2e4 9871 . . . . . . 7  |-  ( 2  x.  2 )  =  4
203202oveq1i 5868 . . . . . 6  |-  ( ( 2  x.  2 )  x.  ( ( S ^ 2 )  +  B ) )  =  ( 4  x.  (
( S ^ 2 )  +  B ) )
204133a1i 10 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
205204, 204, 114mulassd 8858 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  2 )  x.  (
( S ^ 2 )  +  B ) )  =  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
206203, 205syl5eqr 2329 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  =  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
207126, 201, 2063brtr4d 4053 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A  .-  ( ( 1  /  2 ) ( .s `  U
) ( K ( +g  `  U ) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( 4  x.  ( ( S ^
2 )  +  B
) ) )
20833, 63, 67, 104, 207letrd 8973 . . 3  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( 4  x.  ( ( S ^ 2 )  +  B ) ) )
209 4cn 9820 . . . . 5  |-  4  e.  CC
210209a1i 10 . . . 4  |-  ( ph  ->  4  e.  CC )
21113recnd 8861 . . . 4  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
21264recnd 8861 . . . 4  |-  ( ph  ->  B  e.  CC )
213210, 211, 212adddid 8859 . . 3  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  =  ( ( 4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) )
214208, 213breqtrd 4047 . 2  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) )
215 remulcl 8822 . . . 4  |-  ( ( 4  e.  RR  /\  B  e.  RR )  ->  ( 4  x.  B
)  e.  RR )
2161, 64, 215sylancr 644 . . 3  |-  ( ph  ->  ( 4  x.  B
)  e.  RR )
21732, 216, 15leadd2d 9367 . 2  |-  ( ph  ->  ( ( ( K D L ) ^
2 )  <_  (
4  x.  B )  <-> 
( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) ) )
218214, 217mpbird 223 1  |-  ( ph  ->  ( ( K D L ) ^ 2 )  <_  ( 4  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   2c2 9795   4c4 9797   ZZcz 10024   ^cexp 11104   abscabs 11719   Basecbs 13148   ↾s cress 13149   +g cplusg 13208  Scalarcsca 13211   .scvsca 13212   distcds 13217   TopOpenctopn 13326   -gcsg 14365  .gcmg 14366   Abelcabel 15090   LModclmod 15627   LSubSpclss 15689   Metcme 16370   MetSpcmt 17883   normcnm 18099  NrmGrpcngp 18100  CModcclm 18560   CPreHilccph 18602  CMetSpccms 18754
This theorem is referenced by:  minveclem3  18793  minveclem7  18799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-topgen 13344  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-staf 15610  df-srng 15611  df-lmod 15629  df-lss 15690  df-lmhm 15779  df-lvec 15856  df-sra 15925  df-rgmod 15926  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-phl 16530  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-nlm 18109  df-clm 18561  df-cph 18604
  Copyright terms: Public domain W3C validator