MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3 Unicode version

Theorem minveclem3 18793
Description: Lemma for minvec 18800. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
Assertion
Ref Expression
minveclem3  |-  ( ph  ->  ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
Distinct variable groups:    y,  .-    y, r, A    J, r,
y    y, F    y, N    ph, r, y    y, R   
y, U    X, r,
y    Y, r, y    D, r, y    S, r, y
Allowed substitution hints:    R( r)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem3
Dummy variables  w  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  s  e.  RR+ )
2 2z 10054 . . . . . . . . 9  |-  2  e.  ZZ
3 rpexpcl 11122 . . . . . . . . 9  |-  ( ( s  e.  RR+  /\  2  e.  ZZ )  ->  (
s ^ 2 )  e.  RR+ )
41, 2, 3sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s ^ 2 )  e.  RR+ )
54rphalfcld 10402 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( (
s ^ 2 )  /  2 )  e.  RR+ )
6 4nn 9879 . . . . . . . 8  |-  4  e.  NN
7 nnrp 10363 . . . . . . . 8  |-  ( 4  e.  NN  ->  4  e.  RR+ )
86, 7ax-mp 8 . . . . . . 7  |-  4  e.  RR+
9 rpdivcl 10376 . . . . . . 7  |-  ( ( ( ( s ^
2 )  /  2
)  e.  RR+  /\  4  e.  RR+ )  ->  (
( ( s ^
2 )  /  2
)  /  4 )  e.  RR+ )
105, 8, 9sylancl 643 . . . . . 6  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( (
( s ^ 2 )  /  2 )  /  4 )  e.  RR+ )
11 minvec.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
1211adantr 451 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  Y  e.  ( LSubSp `  U )
)
13 rabexg 4164 . . . . . . 7  |-  ( Y  e.  ( LSubSp `  U
)  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  e.  _V )
1412, 13syl 15 . . . . . 6  |-  ( (
ph  /\  s  e.  RR+ )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  e.  _V )
15 eqid 2283 . . . . . . 7  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
16 oveq2 5866 . . . . . . . . 9  |-  ( r  =  ( ( ( s ^ 2 )  /  2 )  / 
4 )  ->  (
( S ^ 2 )  +  r )  =  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )
1716breq2d 4035 . . . . . . . 8  |-  ( r  =  ( ( ( s ^ 2 )  /  2 )  / 
4 )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r )  <->  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) ) )
1817rabbidv 2780 . . . . . . 7  |-  ( r  =  ( ( ( s ^ 2 )  /  2 )  / 
4 )  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) } )
1915, 18elrnmpt1s 4927 . . . . . 6  |-  ( ( ( ( ( s ^ 2 )  / 
2 )  /  4
)  e.  RR+  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  e.  _V )  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
2010, 14, 19syl2anc 642 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
21 minvec.f . . . . 5  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
2220, 21syl6eleqr 2374 . . . 4  |-  ( (
ph  /\  s  e.  RR+ )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  e.  F )
23 oveq2 5866 . . . . . . . . . 10  |-  ( y  =  u  ->  ( A D y )  =  ( A D u ) )
2423oveq1d 5873 . . . . . . . . 9  |-  ( y  =  u  ->  (
( A D y ) ^ 2 )  =  ( ( A D u ) ^
2 ) )
2524breq1d 4033 . . . . . . . 8  |-  ( y  =  u  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) )  <->  ( ( A D u ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) ) )
2625elrab 2923 . . . . . . 7  |-  ( u  e.  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( ( ( s ^
2 )  /  2
)  /  4 ) ) }  <->  ( u  e.  Y  /\  (
( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) )
27 oveq2 5866 . . . . . . . . . 10  |-  ( y  =  v  ->  ( A D y )  =  ( A D v ) )
2827oveq1d 5873 . . . . . . . . 9  |-  ( y  =  v  ->  (
( A D y ) ^ 2 )  =  ( ( A D v ) ^
2 ) )
2928breq1d 4033 . . . . . . . 8  |-  ( y  =  v  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) )  <->  ( ( A D v ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) ) )
3029elrab 2923 . . . . . . 7  |-  ( v  e.  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( ( ( s ^
2 )  /  2
)  /  4 ) ) }  <->  ( v  e.  Y  /\  (
( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) )
3126, 30anbi12i 678 . . . . . 6  |-  ( ( u  e.  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  /\  v  e.  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) } )  <-> 
( ( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( ( ( s ^
2 )  /  2
)  /  4 ) ) )  /\  (
v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )
32 simprll 738 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  u  e.  Y )
33 simprrl 740 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  v  e.  Y )
3432, 33ovresd 5988 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( u
( D  |`  ( Y  X.  Y ) ) v )  =  ( u D v ) )
35 minvec.u . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  CPreHil )
36 cphngp 18609 . . . . . . . . . . . . . 14  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
3735, 36syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e. NrmGrp )
38 ngpms 18122 . . . . . . . . . . . . 13  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
39 minvec.x . . . . . . . . . . . . . 14  |-  X  =  ( Base `  U
)
40 minvec.d . . . . . . . . . . . . . 14  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
4139, 40msmet 18003 . . . . . . . . . . . . 13  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
4237, 38, 413syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( Met `  X ) )
4342ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  D  e.  ( Met `  X ) )
44 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
4539, 44lssss 15694 . . . . . . . . . . . . . 14  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
4611, 45syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  C_  X )
4746ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  Y  C_  X
)
4847, 32sseldd 3181 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  u  e.  X )
4947, 33sseldd 3181 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  v  e.  X )
50 metcl 17897 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  u  e.  X  /\  v  e.  X )  ->  (
u D v )  e.  RR )
5143, 48, 49, 50syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( u D v )  e.  RR )
5251resqcld 11271 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
u D v ) ^ 2 )  e.  RR )
535adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
s ^ 2 )  /  2 )  e.  RR+ )
5453rpred 10390 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
s ^ 2 )  /  2 )  e.  RR )
554adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( s ^ 2 )  e.  RR+ )
5655rpred 10390 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( s ^ 2 )  e.  RR )
57 minvec.m . . . . . . . . . . 11  |-  .-  =  ( -g `  U )
58 minvec.n . . . . . . . . . . 11  |-  N  =  ( norm `  U
)
5935ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  U  e.  CPreHil )
6011ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  Y  e.  ( LSubSp `  U )
)
61 minvec.w . . . . . . . . . . . 12  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
6261ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( Us  Y
)  e. CMetSp )
63 minvec.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  X )
6463ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  A  e.  X )
65 minvec.j . . . . . . . . . . 11  |-  J  =  ( TopOpen `  U )
66 minvec.r . . . . . . . . . . 11  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
67 minvec.s . . . . . . . . . . 11  |-  S  =  sup ( R ,  RR ,  `'  <  )
6810adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
( s ^ 2 )  /  2 )  /  4 )  e.  RR+ )
6968rpred 10390 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
( s ^ 2 )  /  2 )  /  4 )  e.  RR )
7068rpge0d 10394 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  0  <_  ( ( ( s ^
2 )  /  2
)  /  4 ) )
71 simprlr 739 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( ( A D u ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) )
72 simprrr 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( ( A D v ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) )
7339, 57, 58, 59, 60, 62, 64, 65, 66, 67, 40, 69, 70, 32, 33, 71, 72minveclem2 18790 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
u D v ) ^ 2 )  <_ 
( 4  x.  (
( ( s ^
2 )  /  2
)  /  4 ) ) )
7453rpcnd 10392 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
s ^ 2 )  /  2 )  e.  CC )
75 4cn 9820 . . . . . . . . . . . 12  |-  4  e.  CC
7675a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  4  e.  CC )
776nnne0i 9780 . . . . . . . . . . . 12  |-  4  =/=  0
7877a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  4  =/=  0 )
7974, 76, 78divcan2d 9538 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( 4  x.  ( ( ( s ^ 2 )  /  2 )  / 
4 ) )  =  ( ( s ^
2 )  /  2
) )
8073, 79breqtrd 4047 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
u D v ) ^ 2 )  <_ 
( ( s ^
2 )  /  2
) )
81 rphalflt 10380 . . . . . . . . . 10  |-  ( ( s ^ 2 )  e.  RR+  ->  ( ( s ^ 2 )  /  2 )  < 
( s ^ 2 ) )
8255, 81syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
s ^ 2 )  /  2 )  < 
( s ^ 2 ) )
8352, 54, 56, 80, 82lelttrd 8974 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
u D v ) ^ 2 )  < 
( s ^ 2 ) )
84 rpre 10360 . . . . . . . . . 10  |-  ( s  e.  RR+  ->  s  e.  RR )
8584ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  s  e.  RR )
86 metge0 17910 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  u  e.  X  /\  v  e.  X )  ->  0  <_  ( u D v ) )
8743, 48, 49, 86syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  0  <_  ( u D v ) )
88 rpge0 10366 . . . . . . . . . 10  |-  ( s  e.  RR+  ->  0  <_ 
s )
8988ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  0  <_  s )
9051, 85, 87, 89lt2sqd 11279 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( (
u D v )  <  s  <->  ( (
u D v ) ^ 2 )  < 
( s ^ 2 ) ) )
9183, 90mpbird 223 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( u D v )  < 
s )
9234, 91eqbrtrd 4043 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
( u  e.  Y  /\  ( ( A D u ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) )  /\  ( v  e.  Y  /\  ( ( A D v ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) ) ) )  ->  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  s
)
9331, 92sylan2b 461 . . . . 5  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
u  e.  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  /\  v  e.  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) } ) )  ->  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  s
)
9493ralrimivva 2635 . . . 4  |-  ( (
ph  /\  s  e.  RR+ )  ->  A. u  e.  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) } A. v  e. 
{ y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) }  ( u ( D  |`  ( Y  X.  Y ) ) v )  <  s )
95 raleq 2736 . . . . . 6  |-  ( w  =  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( ( ( s ^
2 )  /  2
)  /  4 ) ) }  ->  ( A. v  e.  w  ( u ( D  |`  ( Y  X.  Y
) ) v )  <  s  <->  A. v  e.  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) }  ( u ( D  |`  ( Y  X.  Y ) ) v )  <  s ) )
9695raleqbi1dv 2744 . . . . 5  |-  ( w  =  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( ( ( s ^
2 )  /  2
)  /  4 ) ) }  ->  ( A. u  e.  w  A. v  e.  w  ( u ( D  |`  ( Y  X.  Y
) ) v )  <  s  <->  A. u  e.  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) } A. v  e. 
{ y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) }  ( u ( D  |`  ( Y  X.  Y ) ) v )  <  s ) )
9796rspcev 2884 . . . 4  |-  ( ( { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( ( ( s ^ 2 )  /  2 )  /  4 ) ) }  e.  F  /\  A. u  e.  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) } A. v  e.  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( ( ( s ^ 2 )  / 
2 )  /  4
) ) }  (
u ( D  |`  ( Y  X.  Y
) ) v )  <  s )  ->  E. w  e.  F  A. u  e.  w  A. v  e.  w  ( u ( D  |`  ( Y  X.  Y
) ) v )  <  s )
9822, 94, 97syl2anc 642 . . 3  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. w  e.  F  A. u  e.  w  A. v  e.  w  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  s
)
9998ralrimiva 2626 . 2  |-  ( ph  ->  A. s  e.  RR+  E. w  e.  F  A. u  e.  w  A. v  e.  w  (
u ( D  |`  ( Y  X.  Y
) ) v )  <  s )
10039, 57, 58, 35, 11, 61, 63, 65, 66, 67, 40minveclem3a 18791 . . . 4  |-  ( ph  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
101 cmetmet 18712 . . . 4  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
102 metxmet 17899 . . . 4  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
103100, 101, 1023syl 18 . . 3  |-  ( ph  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y ) )
10439, 57, 58, 35, 11, 61, 63, 65, 66, 67, 40, 21minveclem3b 18792 . . 3  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
105 fgcfil 18697 . . 3  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y )  /\  F  e.  ( fBas `  Y
) )  ->  (
( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  <->  A. s  e.  RR+  E. w  e.  F  A. u  e.  w  A. v  e.  w  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  s
) )
106103, 104, 105syl2anc 642 . 2  |-  ( ph  ->  ( ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  <->  A. s  e.  RR+  E. w  e.  F  A. u  e.  w  A. v  e.  w  (
u ( D  |`  ( Y  X.  Y
) ) v )  <  s ) )
10799, 106mpbird 223 1  |-  ( ph  ->  ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   4c4 9797   ZZcz 10024   RR+crp 10354   ^cexp 11104   Basecbs 13148   ↾s cress 13149   distcds 13217   TopOpenctopn 13326   -gcsg 14365   LSubSpclss 15689   * Metcxmt 16369   Metcme 16370   fBascfbas 17518   filGencfg 17519   MetSpcmt 17883   normcnm 18099  NrmGrpcngp 18100   CPreHilccph 18602  CauFilccfil 18678   CMetcms 18680  CMetSpccms 18754
This theorem is referenced by:  minveclem4a  18794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-topgen 13344  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-staf 15610  df-srng 15611  df-lmod 15629  df-lss 15690  df-lmhm 15779  df-lvec 15856  df-sra 15925  df-rgmod 15926  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-phl 16530  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-fbas 17520  df-fg 17521  df-fil 17541  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-nlm 18109  df-clm 18561  df-cph 18604  df-cfil 18681  df-cmet 18683  df-cms 18757
  Copyright terms: Public domain W3C validator