MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3b Unicode version

Theorem minveclem3b 18792
Description: Lemma for minvec 18800. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
Assertion
Ref Expression
minveclem3b  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
Distinct variable groups:    y,  .-    y, r, A    J, r,
y    y, F    y, N    ph, r, y    y, R   
y, U    X, r,
y    Y, r, y    D, r, y    S, r, y
Allowed substitution hints:    R( r)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem3b
Dummy variables  w  s  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minvec.f . . 3  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
2 ssrab2 3258 . . . . . 6  |-  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  C_  Y
3 minvec.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
43adantr 451 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  Y  e.  ( LSubSp `  U )
)
5 elpw2g 4174 . . . . . . 7  |-  ( Y  e.  ( LSubSp `  U
)  ->  ( {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  e.  ~P Y  <->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) }  C_  Y )
)
64, 5syl 15 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  e.  ~P Y  <->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) }  C_  Y )
)
72, 6mpbiri 224 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  e.  ~P Y )
8 eqid 2283 . . . . 5  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
97, 8fmptd 5684 . . . 4  |-  ( ph  ->  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) : RR+ --> ~P Y )
10 frn 5395 . . . 4  |-  ( ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } ) : RR+ --> ~P Y  ->  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  C_  ~P Y )
119, 10syl 15 . . 3  |-  ( ph  ->  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )  C_  ~P Y )
121, 11syl5eqss 3222 . 2  |-  ( ph  ->  F  C_  ~P Y
)
13 1rp 10358 . . . . . 6  |-  1  e.  RR+
14 fdm 5393 . . . . . . 7  |-  ( ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } ) : RR+ --> ~P Y  ->  dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  =  RR+ )
159, 14syl 15 . . . . . 6  |-  ( ph  ->  dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )  = 
RR+ )
1613, 15syl5eleqr 2370 . . . . 5  |-  ( ph  ->  1  e.  dom  (
r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } ) )
17 ne0i 3461 . . . . 5  |-  ( 1  e.  dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  ->  dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )  =/=  (/) )
1816, 17syl 15 . . . 4  |-  ( ph  ->  dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )  =/=  (/) )
19 dm0rn0 4895 . . . . . 6  |-  ( dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  =  (/)  <->  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  =  (/) )
201eqeq1i 2290 . . . . . 6  |-  ( F  =  (/)  <->  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )  =  (/) )
2119, 20bitr4i 243 . . . . 5  |-  ( dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  =  (/)  <->  F  =  (/) )
2221necon3bii 2478 . . . 4  |-  ( dom  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  =/=  (/)  <->  F  =/=  (/) )
2318, 22sylib 188 . . 3  |-  ( ph  ->  F  =/=  (/) )
24 minvec.x . . . . . . . . . . . . . . . . . 18  |-  X  =  ( Base `  U
)
25 minvec.m . . . . . . . . . . . . . . . . . 18  |-  .-  =  ( -g `  U )
26 minvec.n . . . . . . . . . . . . . . . . . 18  |-  N  =  ( norm `  U
)
27 minvec.u . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  U  e.  CPreHil )
28 minvec.w . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
29 minvec.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  X )
30 minvec.j . . . . . . . . . . . . . . . . . 18  |-  J  =  ( TopOpen `  U )
31 minvec.r . . . . . . . . . . . . . . . . . 18  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
32 minvec.s . . . . . . . . . . . . . . . . . 18  |-  S  =  sup ( R ,  RR ,  `'  <  )
3324, 25, 26, 27, 3, 28, 29, 30, 31, 32minveclem4c 18789 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  RR )
3433resqcld 11271 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
35 ltaddrp 10386 . . . . . . . . . . . . . . . 16  |-  ( ( ( S ^ 2 )  e.  RR  /\  r  e.  RR+ )  -> 
( S ^ 2 )  <  ( ( S ^ 2 )  +  r ) )
3634, 35sylan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S ^ 2 )  < 
( ( S ^
2 )  +  r ) )
3734adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S ^ 2 )  e.  RR )
38 rpre 10360 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  ->  r  e.  RR )
3938adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR )
4037, 39readdcld 8862 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S ^ 2 )  +  r )  e.  RR )
4140recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S ^ 2 )  +  r )  e.  CC )
4241sqsqrd 11921 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( sqr `  ( ( S ^ 2 )  +  r ) ) ^
2 )  =  ( ( S ^ 2 )  +  r ) )
4336, 42breqtrrd 4049 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S ^ 2 )  < 
( ( sqr `  (
( S ^ 2 )  +  r ) ) ^ 2 ) )
4424, 25, 26, 27, 3, 28, 29, 30, 31minveclem1 18788 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
4544simp1d 967 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  R  C_  RR )
4645adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  R  C_  RR )
4744simp2d 968 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  R  =/=  (/) )
4847adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  R  =/=  (/) )
49 0re 8838 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
5044simp3d 969 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
51 breq1 4026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  0  ->  (
y  <_  w  <->  0  <_  w ) )
5251ralbidv 2563 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  0  ->  ( A. w  e.  R  y  <_  w  <->  A. w  e.  R  0  <_  w ) )
5352rspcev 2884 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. y  e.  RR  A. w  e.  R  y  <_  w )
5449, 50, 53sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E. y  e.  RR  A. w  e.  R  y  <_  w )
5554adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. y  e.  RR  A. w  e.  R  y  <_  w
)
56 infmrcl 9733 . . . . . . . . . . . . . . . . 17  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. y  e.  RR  A. w  e.  R  y  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
5746, 48, 55, 56syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  r  e.  RR+ )  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
5832, 57syl5eqel 2367 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  RR+ )  ->  S  e.  RR )
5949a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  e.  RR )
6058sqge0d 11272 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  ( S ^ 2 ) )
6159, 37, 40, 60, 36lelttrd 8974 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <  ( ( S ^ 2 )  +  r ) )
6259, 40, 61ltled 8967 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  ( ( S ^ 2 )  +  r ) )
6340, 62resqrcld 11900 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( sqr `  ( ( S ^
2 )  +  r ) )  e.  RR )
6450adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. w  e.  R  0  <_  w )
65 infmrgelb 9734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. y  e.  RR  A. w  e.  R  y  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
6646, 48, 55, 59, 65syl31anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R 
0  <_  w )
)
6764, 66mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
6867, 32syl6breqr 4063 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  S )
6940, 62sqrge0d 11903 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  ( sqr `  ( ( S ^ 2 )  +  r ) ) )
7058, 63, 68, 69lt2sqd 11279 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  <  ( sqr `  (
( S ^ 2 )  +  r ) )  <->  ( S ^
2 )  <  (
( sqr `  (
( S ^ 2 )  +  r ) ) ^ 2 ) ) )
7143, 70mpbird 223 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  RR+ )  ->  S  <  ( sqr `  ( ( S ^ 2 )  +  r ) ) )
7258, 63ltnled 8966 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  <  ( sqr `  (
( S ^ 2 )  +  r ) )  <->  -.  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  S
) )
7371, 72mpbid 201 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  S )
7432breq2i 4031 . . . . . . . . . . . . 13  |-  ( ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  S  <->  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  sup ( R ,  RR ,  `'  <  ) )
75 infmrgelb 9734 . . . . . . . . . . . . . . 15  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. y  e.  RR  A. w  e.  R  y  <_  w )  /\  ( sqr `  ( ( S ^
2 )  +  r ) )  e.  RR )  ->  ( ( sqr `  ( ( S ^
2 )  +  r ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  w
) )
7646, 48, 55, 63, 75syl31anc 1185 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  w
) )
7731raleqi 2740 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  w 
<-> 
A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) ( sqr `  (
( S ^ 2 )  +  r ) )  <_  w )
78 fvex 5539 . . . . . . . . . . . . . . . . 17  |-  ( N `
 ( A  .-  y ) )  e. 
_V
7978rgenw 2610 . . . . . . . . . . . . . . . 16  |-  A. y  e.  Y  ( N `  ( A  .-  y
) )  e.  _V
80 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
81 breq2 4027 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( N `  ( A  .-  y ) )  ->  ( ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  w 
<->  ( sqr `  (
( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y
) ) ) )
8280, 81ralrnmpt 5669 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  Y  ( N `  ( A  .-  y ) )  e. 
_V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) ( sqr `  ( ( S ^
2 )  +  r ) )  <_  w  <->  A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) ) )
8379, 82ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) ( sqr `  (
( S ^ 2 )  +  r ) )  <_  w  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) )
8477, 83bitri 240 . . . . . . . . . . . . . 14  |-  ( A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  w 
<-> 
A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) )
8576, 84syl6bb 252 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) ) )
8674, 85syl5bb 248 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  S 
<-> 
A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) ) )
8773, 86mtbid 291 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) )
88 rexnal 2554 . . . . . . . . . . 11  |-  ( E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y ) )  <->  -.  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) )
8987, 88sylibr 203 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_ 
( N `  ( A  .-  y ) ) )
9063adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( sqr `  ( ( S ^ 2 )  +  r ) )  e.  RR )
91 cphngp 18609 . . . . . . . . . . . . . . . . . . 19  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
9227, 91syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  U  e. NrmGrp )
93 ngpms 18122 . . . . . . . . . . . . . . . . . 18  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
94 minvec.d . . . . . . . . . . . . . . . . . . 19  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
9524, 94msmet 18003 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
9692, 93, 953syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  e.  ( Met `  X ) )
9796ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  D  e.  ( Met `  X
) )
9829ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  A  e.  X )
99 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
10024, 99lssss 15694 . . . . . . . . . . . . . . . . . 18  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
1014, 100syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  r  e.  RR+ )  ->  Y  C_  X
)
102101sselda 3180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  y  e.  X )
103 metcl 17897 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  e.  RR )
10497, 98, 102, 103syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( A D y )  e.  RR )
10569adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  0  <_  ( sqr `  (
( S ^ 2 )  +  r ) ) )
106 metge0 17910 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  0  <_  ( A D y ) )
10797, 98, 102, 106syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  0  <_  ( A D y ) )
10890, 104, 105, 107le2sqd 11280 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  r ) )  <_  ( A D y )  <->  ( ( sqr `  ( ( S ^ 2 )  +  r ) ) ^
2 )  <_  (
( A D y ) ^ 2 ) ) )
10994oveqi 5871 . . . . . . . . . . . . . . . . 17  |-  ( A D y )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) y )
11098, 102ovresd 5988 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( A ( ( dist `  U )  |`  ( X  X.  X ) ) y )  =  ( A ( dist `  U
) y ) )
111109, 110syl5eq 2327 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( A D y )  =  ( A ( dist `  U ) y ) )
11292ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  U  e. NrmGrp )
113 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  U )  =  (
dist `  U )
11426, 24, 25, 113ngpds 18125 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  y  e.  X )  ->  ( A ( dist `  U
) y )  =  ( N `  ( A  .-  y ) ) )
115112, 98, 102, 114syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( A ( dist `  U
) y )  =  ( N `  ( A  .-  y ) ) )
116111, 115eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( A D y )  =  ( N `  ( A  .-  y ) ) )
117116breq2d 4035 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  r ) )  <_  ( A D y )  <->  ( sqr `  ( ( S ^
2 )  +  r ) )  <_  ( N `  ( A  .-  y ) ) ) )
11842adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  r ) ) ^ 2 )  =  ( ( S ^ 2 )  +  r ) )
119118breq1d 4033 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( ( sqr `  (
( S ^ 2 )  +  r ) ) ^ 2 )  <_  ( ( A D y ) ^
2 )  <->  ( ( S ^ 2 )  +  r )  <_  (
( A D y ) ^ 2 ) ) )
120108, 117, 1193bitr3d 274 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y
) )  <->  ( ( S ^ 2 )  +  r )  <_  (
( A D y ) ^ 2 ) ) )
121120notbid 285 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( -.  ( sqr `  (
( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y
) )  <->  -.  (
( S ^ 2 )  +  r )  <_  ( ( A D y ) ^
2 ) ) )
12240adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  r )  e.  RR )
123104resqcld 11271 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( A D y ) ^ 2 )  e.  RR )
124122, 123letrid 8969 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( ( S ^
2 )  +  r )  <_  ( ( A D y ) ^
2 )  \/  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) ) )
125124ord 366 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( -.  ( ( S ^
2 )  +  r )  <_  ( ( A D y ) ^
2 )  ->  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) ) )
126121, 125sylbid 206 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( -.  ( sqr `  (
( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y
) )  ->  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) ) )
127126reximdva 2655 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  r ) )  <_  ( N `  ( A  .-  y ) )  ->  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) ) )
12889, 127mpd 14 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) )
129 rabn0 3474 . . . . . . . . 9  |-  ( { y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =/=  (/)  <->  E. y  e.  Y  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) )
130128, 129sylibr 203 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =/=  (/) )
131130necomd 2529 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  (/)  =/=  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )
132131neneqd 2462 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  (/)  =  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )
133132nrexdv 2646 . . . . 5  |-  ( ph  ->  -.  E. r  e.  RR+  (/)  =  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )
1341eleq2i 2347 . . . . . 6  |-  ( (/)  e.  F  <->  (/)  e.  ran  (
r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } ) )
135 0ex 4150 . . . . . . 7  |-  (/)  e.  _V
1368elrnmpt 4926 . . . . . . 7  |-  ( (/)  e.  _V  ->  ( (/)  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )  <->  E. r  e.  RR+  (/)  =  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } ) )
137135, 136ax-mp 8 . . . . . 6  |-  ( (/)  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )  <->  E. r  e.  RR+  (/)  =  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )
138134, 137bitri 240 . . . . 5  |-  ( (/)  e.  F  <->  E. r  e.  RR+  (/)  =  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
139133, 138sylnibr 296 . . . 4  |-  ( ph  ->  -.  (/)  e.  F )
140 df-nel 2449 . . . 4  |-  ( (/)  e/  F  <->  -.  (/)  e.  F
)
141139, 140sylibr 203 . . 3  |-  ( ph  -> 
(/)  e/  F )
14258adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  S  e.  RR )
143142resqcld 11271 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  RR )
14439adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  r  e.  RR )
145123, 143, 144lesubadd2d 9371 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  Y )  ->  (
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  r  <->  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) ) )
146145rabbidva 2779 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  RR+ )  ->  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r }  =  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } )
147146mpteq2dva 4106 . . . . . . . . . 10  |-  ( ph  ->  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r }
)  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } ) )
148147rneqd 4906 . . . . . . . . 9  |-  ( ph  ->  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
r } )  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } ) )
149148, 1syl6reqr 2334 . . . . . . . 8  |-  ( ph  ->  F  =  ran  (
r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } ) )
150149eleq2d 2350 . . . . . . 7  |-  ( ph  ->  ( u  e.  F  <->  u  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } ) ) )
151 vex 2791 . . . . . . . 8  |-  u  e. 
_V
152 breq2 4027 . . . . . . . . . . 11  |-  ( r  =  s  ->  (
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  r  <->  ( (
( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
s ) )
153152rabbidv 2780 . . . . . . . . . 10  |-  ( r  =  s  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r }  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }
)
154153cbvmptv 4111 . . . . . . . . 9  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  =  ( s  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
s } )
155154elrnmpt 4926 . . . . . . . 8  |-  ( u  e.  _V  ->  (
u  e.  ran  (
r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  <->  E. s  e.  RR+  u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }
) )
156151, 155ax-mp 8 . . . . . . 7  |-  ( u  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  <->  E. s  e.  RR+  u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }
)
157150, 156syl6bb 252 . . . . . 6  |-  ( ph  ->  ( u  e.  F  <->  E. s  e.  RR+  u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }
) )
158149eleq2d 2350 . . . . . . 7  |-  ( ph  ->  ( v  e.  F  <->  v  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } ) ) )
159 vex 2791 . . . . . . . 8  |-  v  e. 
_V
160 breq2 4027 . . . . . . . . . . 11  |-  ( r  =  t  ->  (
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  r  <->  ( (
( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
t ) )
161160rabbidv 2780 . . . . . . . . . 10  |-  ( r  =  t  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r }  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
)
162161cbvmptv 4111 . . . . . . . . 9  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  =  ( t  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
t } )
163162elrnmpt 4926 . . . . . . . 8  |-  ( v  e.  _V  ->  (
v  e.  ran  (
r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  <->  E. t  e.  RR+  v  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
) )
164159, 163ax-mp 8 . . . . . . 7  |-  ( v  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  <->  E. t  e.  RR+  v  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
)
165158, 164syl6bb 252 . . . . . 6  |-  ( ph  ->  ( v  e.  F  <->  E. t  e.  RR+  v  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
) )
166157, 165anbi12d 691 . . . . 5  |-  ( ph  ->  ( ( u  e.  F  /\  v  e.  F )  <->  ( E. s  e.  RR+  u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  /\  E. t  e.  RR+  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } ) ) )
167 reeanv 2707 . . . . . 6  |-  ( E. s  e.  RR+  E. t  e.  RR+  ( u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  {
y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  t } )  <-> 
( E. s  e.  RR+  u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  /\  E. t  e.  RR+  v  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
) )
16896ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  D  e.  ( Met `  X ) )
16929ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  A  e.  X )
1703, 100syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Y  C_  X )
171170adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  Y  C_  X )
172171sselda 3180 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  y  e.  X )
173168, 169, 172, 103syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  ( A D y )  e.  RR )
174173resqcld 11271 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  ( ( A D y ) ^ 2 )  e.  RR )
17534ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  RR )
176174, 175resubcld 9211 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  ( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  e.  RR )
177 simplrl 736 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  s  e.  RR+ )
178177rpred 10390 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  s  e.  RR )
179 simplrr 737 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  t  e.  RR+ )
180179rpred 10390 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  t  e.  RR )
181 lemin 10520 . . . . . . . . . . . 12  |-  ( ( ( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  e.  RR  /\  s  e.  RR  /\  t  e.  RR )  ->  (
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  if ( s  <_  t ,  s ,  t )  <->  ( (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s  /\  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t ) ) )
182176, 178, 180, 181syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  RR+  /\  t  e.  RR+ ) )  /\  y  e.  Y )  ->  ( ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if (
s  <_  t , 
s ,  t )  <-> 
( ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s  /\  ( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  t ) ) )
183182rabbidva 2779 . . . . . . . . . 10  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if ( s  <_  t ,  s ,  t ) }  =  { y  e.  Y  |  ( ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s  /\  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t ) } )
184 ifcl 3601 . . . . . . . . . . . . 13  |-  ( ( s  e.  RR+  /\  t  e.  RR+ )  ->  if ( s  <_  t ,  s ,  t )  e.  RR+ )
185184adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  if ( s  <_  t ,  s ,  t )  e.  RR+ )
1863adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  Y  e.  ( LSubSp `  U )
)
187 rabexg 4164 . . . . . . . . . . . . 13  |-  ( Y  e.  ( LSubSp `  U
)  ->  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if ( s  <_  t ,  s ,  t ) }  e.  _V )
188186, 187syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if ( s  <_  t ,  s ,  t ) }  e.  _V )
189 eqid 2283 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
r } )
190 breq2 4027 . . . . . . . . . . . . . 14  |-  ( r  =  if ( s  <_  t ,  s ,  t )  -> 
( ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r  <->  ( (
( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_  if ( s  <_  t ,  s ,  t ) ) )
191190rabbidv 2780 . . . . . . . . . . . . 13  |-  ( r  =  if ( s  <_  t ,  s ,  t )  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r }  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if (
s  <_  t , 
s ,  t ) } )
192189, 191elrnmpt1s 4927 . . . . . . . . . . . 12  |-  ( ( if ( s  <_ 
t ,  s ,  t )  e.  RR+  /\ 
{ y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if (
s  <_  t , 
s ,  t ) }  e.  _V )  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if (
s  <_  t , 
s ,  t ) }  e.  ran  (
r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } ) )
193185, 188, 192syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if ( s  <_  t ,  s ,  t ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  r } ) )
194149adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
r } ) )
195193, 194eleqtrrd 2360 . . . . . . . . . 10  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  if ( s  <_  t ,  s ,  t ) }  e.  F )
196183, 195eqeltrrd 2358 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  { y  e.  Y  |  ( ( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  s  /\  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t ) }  e.  F )
197 ineq12 3365 . . . . . . . . . . 11  |-  ( ( u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } )  ->  ( u  i^i  v )  =  ( { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  i^i  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
) )
198 inrab 3440 . . . . . . . . . . 11  |-  ( { y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  s }  i^i  { y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  t } )  =  { y  e.  Y  |  ( ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s  /\  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t ) }
199197, 198syl6eq 2331 . . . . . . . . . 10  |-  ( ( u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } )  ->  ( u  i^i  v )  =  {
y  e.  Y  | 
( ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s  /\  ( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  t ) } )
200199eleq1d 2349 . . . . . . . . 9  |-  ( ( u  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } )  ->  ( ( u  i^i  v )  e.  F  <->  { y  e.  Y  |  ( ( ( ( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
s  /\  ( (
( A D y ) ^ 2 )  -  ( S ^
2 ) )  <_ 
t ) }  e.  F ) )
201196, 200syl5ibrcom 213 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  (
( u  =  {
y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } )  ->  ( u  i^i  v )  e.  F
) )
202151inex1 4155 . . . . . . . . . 10  |-  ( u  i^i  v )  e. 
_V
203202pwid 3638 . . . . . . . . 9  |-  ( u  i^i  v )  e. 
~P ( u  i^i  v )
204 inelcm 3509 . . . . . . . . 9  |-  ( ( ( u  i^i  v
)  e.  F  /\  ( u  i^i  v
)  e.  ~P (
u  i^i  v )
)  ->  ( F  i^i  ~P ( u  i^i  v ) )  =/=  (/) )
205203, 204mpan2 652 . . . . . . . 8  |-  ( ( u  i^i  v )  e.  F  ->  ( F  i^i  ~P ( u  i^i  v ) )  =/=  (/) )
206201, 205syl6 29 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  RR+  /\  t  e.  RR+ ) )  ->  (
( u  =  {
y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } )  ->  ( F  i^i  ~P ( u  i^i  v
) )  =/=  (/) ) )
207206rexlimdvva 2674 . . . . . 6  |-  ( ph  ->  ( E. s  e.  RR+  E. t  e.  RR+  ( u  =  {
y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  s }  /\  v  =  { y  e.  Y  |  (
( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t } )  ->  ( F  i^i  ~P ( u  i^i  v
) )  =/=  (/) ) )
208167, 207syl5bir 209 . . . . 5  |-  ( ph  ->  ( ( E. s  e.  RR+  u  =  {
y  e.  Y  | 
( ( ( A D y ) ^
2 )  -  ( S ^ 2 ) )  <_  s }  /\  E. t  e.  RR+  v  =  { y  e.  Y  |  ( ( ( A D y ) ^ 2 )  -  ( S ^ 2 ) )  <_  t }
)  ->  ( F  i^i  ~P ( u  i^i  v ) )  =/=  (/) ) )
209166, 208sylbid 206 . . . 4  |-  ( ph  ->  ( ( u  e.  F  /\  v  e.  F )  ->  ( F  i^i  ~P ( u  i^i  v ) )  =/=  (/) ) )
210209ralrimivv 2634 . . 3  |-  ( ph  ->  A. u  e.  F  A. v  e.  F  ( F  i^i  ~P (
u  i^i  v )
)  =/=  (/) )
21123, 141, 2103jca 1132 . 2  |-  ( ph  ->  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. u  e.  F  A. v  e.  F  ( F  i^i  ~P (
u  i^i  v )
)  =/=  (/) ) )
212 isfbas 17524 . . 3  |-  ( Y  e.  ( LSubSp `  U
)  ->  ( F  e.  ( fBas `  Y
)  <->  ( F  C_  ~P Y  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. u  e.  F  A. v  e.  F  ( F  i^i  ~P (
u  i^i  v )
)  =/=  (/) ) ) ) )
2133, 212syl 15 . 2  |-  ( ph  ->  ( F  e.  (
fBas `  Y )  <->  ( F  C_  ~P Y  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. u  e.  F  A. v  e.  F  ( F  i^i  ~P (
u  i^i  v )
)  =/=  (/) ) ) ) )
21412, 211, 213mpbir2and 888 1  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    e/ wnel 2447   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ifcif 3565   ~Pcpw 3625   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   2c2 9795   RR+crp 10354   ^cexp 11104   sqrcsqr 11718   Basecbs 13148   ↾s cress 13149   distcds 13217   TopOpenctopn 13326   -gcsg 14365   LSubSpclss 15689   Metcme 16370   fBascfbas 17518   MetSpcmt 17883   normcnm 18099  NrmGrpcngp 18100   CPreHilccph 18602  CMetSpccms 18754
This theorem is referenced by:  minveclem3  18793  minveclem4a  18794  minveclem4  18796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-topgen 13344  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-lmod 15629  df-lss 15690  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-fbas 17520  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-nlm 18109  df-cph 18604
  Copyright terms: Public domain W3C validator