MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Unicode version

Theorem minveclem4a 19198
Description: Lemma for minvec 19204. 
F converges to a point 
P in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
Assertion
Ref Expression
minveclem4a  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
Distinct variable groups:    y,  .-    y, r, A    J, r,
y    y, P    y, F    y, N    ph, r, y    y, R    y, U    X, r,
y    Y, r, y    D, r, y    S, r, y
Allowed substitution hints:    P( r)    R( r)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4a
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
2 ovex 6045 . . . . 5  |-  ( J 
fLim  ( X filGen F ) )  e.  _V
32uniex 4645 . . . 4  |-  U. ( J  fLim  ( X filGen F ) )  e.  _V
43snid 3784 . . 3  |-  U. ( J  fLim  ( X filGen F ) )  e.  { U. ( J  fLim  ( X filGen F ) ) }
5 minvec.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CPreHil )
6 cphngp 19007 . . . . . . . . . . . 12  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
7 ngpxms 18519 . . . . . . . . . . . 12  |-  ( U  e. NrmGrp  ->  U  e.  * MetSp )
85, 6, 73syl 19 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  * MetSp )
9 minvec.j . . . . . . . . . . . 12  |-  J  =  ( TopOpen `  U )
10 minvec.x . . . . . . . . . . . 12  |-  X  =  ( Base `  U
)
11 minvec.d . . . . . . . . . . . 12  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
129, 10, 11xmstopn 18371 . . . . . . . . . . 11  |-  ( U  e.  * MetSp  ->  J  =  ( MetOpen `  D
) )
138, 12syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  =  ( MetOpen `  D ) )
1413oveq1d 6035 . . . . . . . . 9  |-  ( ph  ->  ( Jt  Y )  =  ( ( MetOpen `  D )t  Y
) )
1510, 11xmsxmet 18376 . . . . . . . . . . 11  |-  ( U  e.  * MetSp  ->  D  e.  ( * Met `  X
) )
168, 15syl 16 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( * Met `  X ) )
17 minvec.y . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
18 eqid 2387 . . . . . . . . . . . 12  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
1910, 18lssss 15940 . . . . . . . . . . 11  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
2017, 19syl 16 . . . . . . . . . 10  |-  ( ph  ->  Y  C_  X )
21 eqid 2387 . . . . . . . . . . 11  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
22 eqid 2387 . . . . . . . . . . 11  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
23 eqid 2387 . . . . . . . . . . 11  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
2421, 22, 23metrest 18444 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( ( MetOpen
`  D )t  Y )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
2516, 20, 24syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( MetOpen `  D
)t 
Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
2614, 25eqtr2d 2420 . . . . . . . 8  |-  ( ph  ->  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
27 minvec.m . . . . . . . . . . . 12  |-  .-  =  ( -g `  U )
28 minvec.n . . . . . . . . . . . 12  |-  N  =  ( norm `  U
)
29 minvec.w . . . . . . . . . . . 12  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
30 minvec.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  X )
31 minvec.r . . . . . . . . . . . 12  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
32 minvec.s . . . . . . . . . . . 12  |-  S  =  sup ( R ,  RR ,  `'  <  )
33 minvec.f . . . . . . . . . . . 12  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 19196 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
35 fgcl 17831 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  Y
)  ->  ( Y filGen F )  e.  ( Fil `  Y ) )
3634, 35syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Y filGen F )  e.  ( Fil `  Y
) )
37 fvex 5682 . . . . . . . . . . . 12  |-  ( Base `  U )  e.  _V
3810, 37eqeltri 2457 . . . . . . . . . . 11  |-  X  e. 
_V
3938a1i 11 . . . . . . . . . 10  |-  ( ph  ->  X  e.  _V )
40 trfg 17844 . . . . . . . . . 10  |-  ( ( ( Y filGen F )  e.  ( Fil `  Y
)  /\  Y  C_  X  /\  X  e.  _V )  ->  ( ( X
filGen ( Y filGen F ) )t  Y )  =  ( Y filGen F ) )
4136, 20, 39, 40syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( ( X filGen ( Y filGen F ) )t  Y )  =  ( Y
filGen F ) )
42 fgabs 17832 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
4334, 20, 42syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( X filGen ( Y
filGen F ) )  =  ( X filGen F ) )
4443oveq1d 6035 . . . . . . . . 9  |-  ( ph  ->  ( ( X filGen ( Y filGen F ) )t  Y )  =  ( ( X filGen F )t  Y ) )
4541, 44eqtr3d 2421 . . . . . . . 8  |-  ( ph  ->  ( Y filGen F )  =  ( ( X
filGen F )t  Y ) )
4626, 45oveq12d 6038 . . . . . . 7  |-  ( ph  ->  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( Y filGen F ) )  =  ( ( Jt  Y )  fLim  (
( X filGen F )t  Y ) ) )
47 xmstps 18373 . . . . . . . . . 10  |-  ( U  e.  * MetSp  ->  U  e.  TopSp )
488, 47syl 16 . . . . . . . . 9  |-  ( ph  ->  U  e.  TopSp )
4910, 9istps 16924 . . . . . . . . 9  |-  ( U  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
5048, 49sylib 189 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
51 fbsspw 17785 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
5234, 51syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  C_  ~P Y
)
53 sspwb 4354 . . . . . . . . . . . 12  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
5420, 53sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  ~P Y  C_  ~P X )
5552, 54sstrd 3301 . . . . . . . . . 10  |-  ( ph  ->  F  C_  ~P X
)
56 fbasweak 17818 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
5734, 55, 39, 56syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( fBas `  X ) )
58 fgcl 17831 . . . . . . . . 9  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
5957, 58syl 16 . . . . . . . 8  |-  ( ph  ->  ( X filGen F )  e.  ( Fil `  X
) )
60 filfbas 17801 . . . . . . . . . . . . 13  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  ( Y filGen F )  e.  (
fBas `  Y )
)
6134, 35, 603syl 19 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y filGen F )  e.  ( fBas `  Y
) )
62 fbsspw 17785 . . . . . . . . . . . . . 14  |-  ( ( Y filGen F )  e.  ( fBas `  Y
)  ->  ( Y filGen F )  C_  ~P Y )
6361, 62syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Y filGen F ) 
C_  ~P Y )
6463, 54sstrd 3301 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y filGen F ) 
C_  ~P X )
65 fbasweak 17818 . . . . . . . . . . . 12  |-  ( ( ( Y filGen F )  e.  ( fBas `  Y
)  /\  ( Y filGen F )  C_  ~P X  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
6661, 64, 39, 65syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( Y filGen F )  e.  ( fBas `  X
) )
67 ssfg 17825 . . . . . . . . . . 11  |-  ( ( Y filGen F )  e.  ( fBas `  X
)  ->  ( Y filGen F )  C_  ( X filGen ( Y filGen F ) ) )
6866, 67syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Y filGen F ) 
C_  ( X filGen ( Y filGen F ) ) )
6968, 43sseqtrd 3327 . . . . . . . . 9  |-  ( ph  ->  ( Y filGen F ) 
C_  ( X filGen F ) )
70 filtop 17808 . . . . . . . . . 10  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  Y  e.  ( Y filGen F ) )
7136, 70syl 16 . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( Y
filGen F ) )
7269, 71sseldd 3292 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( X
filGen F ) )
73 flimrest 17936 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen F )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen F ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen F )t  Y ) )  =  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
7450, 59, 72, 73syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( Jt  Y ) 
fLim  ( ( X
filGen F )t  Y ) )  =  ( ( J  fLim  ( X filGen F ) )  i^i  Y ) )
7546, 74eqtrd 2419 . . . . . 6  |-  ( ph  ->  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( Y filGen F ) )  =  ( ( J  fLim  ( X filGen F ) )  i^i  Y ) )
7610, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 19195 . . . . . . 7  |-  ( ph  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
7710, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 19197 . . . . . . 7  |-  ( ph  ->  ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
7823cmetcvg 19109 . . . . . . 7  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( Y filGen F ) )  =/=  (/) )
7976, 77, 78syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( Y filGen F ) )  =/=  (/) )
8075, 79eqnetrrd 2570 . . . . 5  |-  ( ph  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =/=  (/) )
8180neneqd 2566 . . . 4  |-  ( ph  ->  -.  ( ( J 
fLim  ( X filGen F ) )  i^i  Y
)  =  (/) )
82 inss1 3504 . . . . . . 7  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  ( J  fLim  ( X filGen F ) )
8322methaus 18440 . . . . . . . . . . . . 13  |-  ( D  e.  ( * Met `  X )  ->  ( MetOpen
`  D )  e. 
Haus )
8415, 83syl 16 . . . . . . . . . . . 12  |-  ( U  e.  * MetSp  ->  ( MetOpen
`  D )  e. 
Haus )
8512, 84eqeltrd 2461 . . . . . . . . . . 11  |-  ( U  e.  * MetSp  ->  J  e.  Haus )
86 hausflimi 17933 . . . . . . . . . . 11  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  ( X filGen F ) ) )
878, 85, 863syl 19 . . . . . . . . . 10  |-  ( ph  ->  E* x  x  e.  ( J  fLim  ( X filGen F ) ) )
88 ssn0 3603 . . . . . . . . . . . 12  |-  ( ( ( ( J  fLim  ( X filGen F ) )  i^i  Y )  C_  ( J  fLim  ( X
filGen F ) )  /\  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =/=  (/) )  ->  ( J 
fLim  ( X filGen F ) )  =/=  (/) )
8982, 80, 88sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( J  fLim  ( X filGen F ) )  =/=  (/) )
90 n0moeu 3583 . . . . . . . . . . 11  |-  ( ( J  fLim  ( X filGen F ) )  =/=  (/)  ->  ( E* x  x  e.  ( J  fLim  ( X filGen F ) )  <->  E! x  x  e.  ( J  fLim  ( X filGen F ) ) ) )
9189, 90syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( E* x  x  e.  ( J  fLim  ( X filGen F ) )  <-> 
E! x  x  e.  ( J  fLim  ( X filGen F ) ) ) )
9287, 91mpbid 202 . . . . . . . . 9  |-  ( ph  ->  E! x  x  e.  ( J  fLim  ( X filGen F ) ) )
93 euen1b 7114 . . . . . . . . 9  |-  ( ( J  fLim  ( X filGen F ) )  ~~  1o 
<->  E! x  x  e.  ( J  fLim  ( X filGen F ) ) )
9492, 93sylibr 204 . . . . . . . 8  |-  ( ph  ->  ( J  fLim  ( X filGen F ) ) 
~~  1o )
95 en1b 7111 . . . . . . . 8  |-  ( ( J  fLim  ( X filGen F ) )  ~~  1o 
<->  ( J  fLim  ( X filGen F ) )  =  { U. ( J  fLim  ( X filGen F ) ) } )
9694, 95sylib 189 . . . . . . 7  |-  ( ph  ->  ( J  fLim  ( X filGen F ) )  =  { U. ( J  fLim  ( X filGen F ) ) } )
9782, 96syl5sseq 3339 . . . . . 6  |-  ( ph  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  C_  { U. ( J  fLim  ( X filGen F ) ) } )
98 sssn 3900 . . . . . 6  |-  ( ( ( J  fLim  ( X filGen F ) )  i^i  Y )  C_  { U. ( J  fLim  ( X filGen F ) ) }  <->  ( ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  =  (/)  \/  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } ) )
9997, 98sylib 189 . . . . 5  |-  ( ph  ->  ( ( ( J 
fLim  ( X filGen F ) )  i^i  Y
)  =  (/)  \/  (
( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } ) )
10099ord 367 . . . 4  |-  ( ph  ->  ( -.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  =  (/)  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } ) )
10181, 100mpd 15 . . 3  |-  ( ph  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } )
1024, 101syl5eleqr 2474 . 2  |-  ( ph  ->  U. ( J  fLim  ( X filGen F ) )  e.  ( ( J 
fLim  ( X filGen F ) )  i^i  Y
) )
1031, 102syl5eqel 2471 1  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    = wceq 1649    e. wcel 1717   E!weu 2238   E*wmo 2239    =/= wne 2550   {crab 2653   _Vcvv 2899    i^i cin 3262    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   {csn 3757   U.cuni 3957   class class class wbr 4153    e. cmpt 4207    X. cxp 4816   `'ccnv 4817   ran crn 4819    |` cres 4820   ` cfv 5394  (class class class)co 6020   1oc1o 6653    ~~ cen 7042   supcsup 7380   RRcr 8922    + caddc 8926    < clt 9053    <_ cle 9054   2c2 9981   RR+crp 10544   ^cexp 11309   Basecbs 13396   ↾s cress 13397   distcds 13465   ↾t crest 13575   TopOpenctopn 13576   -gcsg 14615   LSubSpclss 15935   * Metcxmt 16612   fBascfbas 16615   filGencfg 16616   MetOpencmopn 16617  TopOnctopon 16882   TopSpctps 16884   Hauscha 17294   Filcfil 17798    fLim cflim 17887   *
MetSpcxme 18256   normcnm 18495  NrmGrpcngp 18496   CPreHilccph 19000  CauFilccfil 19076   CMetcms 19078  CMetSpccms 19154
This theorem is referenced by:  minveclem4b  19199  minveclem4  19200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ico 10854  df-icc 10855  df-fz 10976  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-rest 13577  df-topgen 13594  df-0g 13654  df-mnd 14617  df-mhm 14665  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-ghm 14931  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-dvr 15715  df-rnghom 15746  df-drng 15764  df-subrg 15793  df-staf 15860  df-srng 15861  df-lmod 15879  df-lss 15936  df-lmhm 16025  df-lvec 16102  df-sra 16171  df-rgmod 16172  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-phl 16780  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-ntr 17007  df-nei 17085  df-haus 17301  df-fil 17799  df-flim 17892  df-xms 18259  df-ms 18260  df-nm 18501  df-ngp 18502  df-nlm 18505  df-clm 18959  df-cph 19002  df-cfil 19079  df-cmet 19081  df-cms 19157
  Copyright terms: Public domain W3C validator