MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4b Unicode version

Theorem minveclem4b 18795
Description: Lemma for minvec 18800. The convergent point of the Cauchy sequence  F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
Assertion
Ref Expression
minveclem4b  |-  ( ph  ->  P  e.  X )
Distinct variable groups:    y,  .-    y, r, A    J, r,
y    y, P    y, F    y, N    ph, r, y    y, R    y, U    X, r,
y    Y, r, y    D, r, y    S, r, y
Allowed substitution hints:    P( r)    R( r)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4b
StepHypRef Expression
1 minvec.y . . 3  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
2 minvec.x . . . 4  |-  X  =  ( Base `  U
)
3 eqid 2283 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
42, 3lssss 15694 . . 3  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
51, 4syl 15 . 2  |-  ( ph  ->  Y  C_  X )
6 inss2 3390 . . 3  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  Y
7 minvec.m . . . 4  |-  .-  =  ( -g `  U )
8 minvec.n . . . 4  |-  N  =  ( norm `  U
)
9 minvec.u . . . 4  |-  ( ph  ->  U  e.  CPreHil )
10 minvec.w . . . 4  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
11 minvec.a . . . 4  |-  ( ph  ->  A  e.  X )
12 minvec.j . . . 4  |-  J  =  ( TopOpen `  U )
13 minvec.r . . . 4  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
14 minvec.s . . . 4  |-  S  =  sup ( R ,  RR ,  `'  <  )
15 minvec.d . . . 4  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
16 minvec.f . . . 4  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
17 minvec.p . . . 4  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
182, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16, 17minveclem4a 18794 . . 3  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
196, 18sseldi 3178 . 2  |-  ( ph  ->  P  e.  Y )
205, 19sseldd 3181 1  |-  ( ph  ->  P  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547    i^i cin 3151    C_ wss 3152   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736    + caddc 8740    < clt 8867    <_ cle 8868   2c2 9795   RR+crp 10354   ^cexp 11104   Basecbs 13148   ↾s cress 13149   distcds 13217   TopOpenctopn 13326   -gcsg 14365   LSubSpclss 15689   filGencfg 17519    fLim cflim 17629   normcnm 18099   CPreHilccph 18602  CMetSpccms 18754
This theorem is referenced by:  minveclem4  18796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-icc 10663  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topgen 13344  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-staf 15610  df-srng 15611  df-lmod 15629  df-lss 15690  df-lmhm 15779  df-lvec 15856  df-sra 15925  df-rgmod 15926  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-phl 16530  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-ntr 16757  df-nei 16835  df-haus 17043  df-fbas 17520  df-fg 17521  df-fil 17541  df-flim 17634  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-nlm 18109  df-clm 18561  df-cph 18604  df-cfil 18681  df-cmet 18683  df-cms 18757
  Copyright terms: Public domain W3C validator