MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4b Unicode version

Theorem minvecolem4b 22221
Description: Lemma for minveco 22227. The convergent point of the cauchy sequence  F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minveco.f  |-  ( ph  ->  F : NN --> Y )
minveco.1  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A D ( F `
 n ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
Assertion
Ref Expression
minvecolem4b  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  e.  X )
Distinct variable groups:    y, n, F    n, J, y    y, M    y, N    ph, n, y    S, n, y    A, n, y    D, n, y    y, U    y, W    n, X    n, Y, y
Allowed substitution hints:    R( y, n)    U( n)    M( n)    N( n)    W( n)    X( y)

Proof of Theorem minvecolem4b
StepHypRef Expression
1 minveco.u . . . 4  |-  ( ph  ->  U  e.  CPreHil OLD )
2 phnv 22156 . . . 4  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
31, 2syl 16 . . 3  |-  ( ph  ->  U  e.  NrmCVec )
4 minveco.w . . . . 5  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
5 elin 3466 . . . . 5  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
64, 5sylib 189 . . . 4  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
76simpld 446 . . 3  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
8 minveco.x . . . 4  |-  X  =  ( BaseSet `  U )
9 minveco.y . . . 4  |-  Y  =  ( BaseSet `  W )
10 eqid 2380 . . . 4  |-  ( SubSp `  U )  =  (
SubSp `  U )
118, 9, 10sspba 22067 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
123, 7, 11syl2anc 643 . 2  |-  ( ph  ->  Y  C_  X )
13 minveco.d . . . . . . . 8  |-  D  =  ( IndMet `  U )
148, 13imsxmet 22025 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  D  e.  ( * Met `  X
) )
153, 14syl 16 . . . . . 6  |-  ( ph  ->  D  e.  ( * Met `  X ) )
16 minveco.j . . . . . . 7  |-  J  =  ( MetOpen `  D )
1716methaus 18433 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Haus )
1815, 17syl 16 . . . . 5  |-  ( ph  ->  J  e.  Haus )
19 lmfun 17360 . . . . 5  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
2018, 19syl 16 . . . 4  |-  ( ph  ->  Fun  ( ~~> t `  J ) )
21 minveco.m . . . . . 6  |-  M  =  ( -v `  U
)
22 minveco.n . . . . . 6  |-  N  =  ( normCV `  U )
23 minveco.a . . . . . 6  |-  ( ph  ->  A  e.  X )
24 minveco.r . . . . . 6  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
25 minveco.s . . . . . 6  |-  S  =  sup ( R ,  RR ,  `'  <  )
26 minveco.f . . . . . 6  |-  ( ph  ->  F : NN --> Y )
27 minveco.1 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A D ( F `
 n ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
288, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27minvecolem4a 22220 . . . . 5  |-  ( ph  ->  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) )
29 eqid 2380 . . . . . . 7  |-  ( Jt  Y )  =  ( Jt  Y )
30 nnuz 10446 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
31 fvex 5675 . . . . . . . . 9  |-  ( BaseSet `  W )  e.  _V
329, 31eqeltri 2450 . . . . . . . 8  |-  Y  e. 
_V
3332a1i 11 . . . . . . 7  |-  ( ph  ->  Y  e.  _V )
3416mopntop 18353 . . . . . . . 8  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
3515, 34syl 16 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
36 xmetres2 18292 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
3715, 12, 36syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y ) )
38 eqid 2380 . . . . . . . . . 10  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3938mopntopon 18352 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y
)  ->  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  e.  (TopOn `  Y ) )
4037, 39syl 16 . . . . . . . 8  |-  ( ph  ->  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  e.  (TopOn `  Y )
)
41 lmcl 17276 . . . . . . . 8  |-  ( ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  e.  (TopOn `  Y )  /\  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) )  ->  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  e.  Y )
4240, 28, 41syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  e.  Y )
43 1z 10236 . . . . . . . 8  |-  1  e.  ZZ
4443a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
4529, 30, 33, 35, 42, 44, 26lmss 17277 . . . . . 6  |-  ( ph  ->  ( F ( ~~> t `  J ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
)  <->  F ( ~~> t `  ( Jt  Y ) ) ( ( ~~> t `  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) ) )
46 eqid 2380 . . . . . . . . . 10  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
4746, 16, 38metrest 18437 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
4815, 12, 47syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
4948fveq2d 5665 . . . . . . 7  |-  ( ph  ->  ( ~~> t `  ( Jt  Y ) )  =  ( ~~> t `  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) ) ) )
5049breqd 4157 . . . . . 6  |-  ( ph  ->  ( F ( ~~> t `  ( Jt  Y ) ) ( ( ~~> t `  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  <->  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) ) )
5145, 50bitrd 245 . . . . 5  |-  ( ph  ->  ( F ( ~~> t `  J ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
)  <->  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) ) )
5228, 51mpbird 224 . . . 4  |-  ( ph  ->  F ( ~~> t `  J ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
) )
53 funbrfv 5697 . . . 4  |-  ( Fun  ( ~~> t `  J
)  ->  ( F
( ~~> t `  J
) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  -> 
( ( ~~> t `  J ) `  F
)  =  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
) ) )
5420, 52, 53sylc 58 . . 3  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  =  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
) )
5554, 42eqeltrd 2454 . 2  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  e.  Y )
5612, 55sseldd 3285 1  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2892    i^i cin 3255    C_ wss 3256   class class class wbr 4146    e. cmpt 4200    X. cxp 4809   `'ccnv 4810   ran crn 4812    |` cres 4813   Fun wfun 5381   -->wf 5383   ` cfv 5387  (class class class)co 6013   supcsup 7373   RRcr 8915   1c1 8917    + caddc 8919    < clt 9046    <_ cle 9047    / cdiv 9602   NNcn 9925   2c2 9974   ZZcz 10207   ^cexp 11302   ↾t crest 13568   * Metcxmt 16605   MetOpencmopn 16610   Topctop 16874  TopOnctopon 16875   ~~> tclm 17205   Hauscha 17287   NrmCVeccnv 21904   BaseSetcba 21906   -vcnsb 21909   normCVcnmcv 21910   IndMetcims 21911   SubSpcss 22061   CPreHil OLDccphlo 22154   CBanccbn 22205
This theorem is referenced by:  minvecolem4  22223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-n0 10147  df-z 10208  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ico 10847  df-icc 10848  df-fl 11122  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-rest 13570  df-topgen 13587  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-top 16879  df-bases 16881  df-topon 16882  df-ntr 17000  df-nei 17078  df-lm 17208  df-haus 17294  df-fil 17792  df-fm 17884  df-flim 17885  df-flf 17886  df-cfil 19072  df-cau 19073  df-cmet 19074  df-grpo 21620  df-gid 21621  df-ginv 21622  df-gdiv 21623  df-ablo 21711  df-vc 21866  df-nv 21912  df-va 21915  df-ba 21916  df-sm 21917  df-0v 21918  df-vs 21919  df-nmcv 21920  df-ims 21921  df-ssp 22062  df-ph 22155  df-cbn 22206
  Copyright terms: Public domain W3C validator