MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Unicode version

Theorem minvecolem5 21476
Description: Lemma for minveco 21479. Discharge the assumption about the sequence  F by applying countable choice ax-cc 8077. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
Assertion
Ref Expression
minvecolem5  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem5
Dummy variables  n  k  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 9799 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  ( 1  /  n
) )
21adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  0  < 
( 1  /  n
) )
3 nnrecre 9798 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  /  n )  e.  RR )
43adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1  /  n )  e.  RR )
5 minveco.s . . . . . . . . . . . . . 14  |-  S  =  sup ( R ,  RR ,  `'  <  )
6 minveco.x . . . . . . . . . . . . . . . . . 18  |-  X  =  ( BaseSet `  U )
7 minveco.m . . . . . . . . . . . . . . . . . 18  |-  M  =  ( -v `  U
)
8 minveco.n . . . . . . . . . . . . . . . . . 18  |-  N  =  ( normCV `  U )
9 minveco.y . . . . . . . . . . . . . . . . . 18  |-  Y  =  ( BaseSet `  W )
10 minveco.u . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  U  e.  CPreHil OLD )
11 minveco.w . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
12 minveco.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  X )
13 minveco.d . . . . . . . . . . . . . . . . . 18  |-  D  =  ( IndMet `  U )
14 minveco.j . . . . . . . . . . . . . . . . . 18  |-  J  =  ( MetOpen `  D )
15 minveco.r . . . . . . . . . . . . . . . . . 18  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 21469 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
1716adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( R 
C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w
) )
1817simp1d 967 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  R  C_  RR )
1917simp2d 968 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  R  =/=  (/) )
20 0re 8854 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
2117simp3d 969 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  A. w  e.  R  0  <_  w )
22 breq1 4042 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
2322ralbidv 2576 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
2423rspcev 2897 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
2520, 21, 24sylancr 644 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
26 infmrcl 9749 . . . . . . . . . . . . . . 15  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
2718, 19, 25, 26syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
285, 27syl5eqel 2380 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  S  e.  RR )
2928resqcld 11287 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( S ^ 2 )  e.  RR )
304, 29ltaddposd 9372 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <  ( 1  /  n )  <->  ( S ^ 2 )  < 
( ( S ^
2 )  +  ( 1  /  n ) ) ) )
312, 30mpbid 201 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( S ^ 2 )  < 
( ( S ^
2 )  +  ( 1  /  n ) ) )
3229, 4readdcld 8878 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( S ^ 2 )  +  ( 1  /  n ) )  e.  RR )
3328sqge0d 11288 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( S ^ 2 ) )
3429, 4, 33, 2addgegt0d 9362 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  0  < 
( ( S ^
2 )  +  ( 1  /  n ) ) )
3532, 34elrpd 10404 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( S ^ 2 )  +  ( 1  /  n ) )  e.  RR+ )
3635rpge0d 10410 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
37 resqrth 11757 . . . . . . . . . . 11  |-  ( ( ( ( S ^
2 )  +  ( 1  /  n ) )  e.  RR  /\  0  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  -> 
( ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  =  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
3832, 36, 37syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  =  ( ( S ^
2 )  +  ( 1  /  n ) ) )
3931, 38breqtrrd 4065 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( S ^ 2 )  < 
( ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 ) )
4035rpsqrcld 11910 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  e.  RR+ )
4140rpred 10406 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  e.  RR )
4220a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  0  e.  RR )
43 infmrgelb 9750 . . . . . . . . . . . . 13  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
4418, 19, 25, 42, 43syl31anc 1185 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R 
0  <_  w )
)
4521, 44mpbird 223 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
4645, 5syl6breqr 4079 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_  S )
4732, 36sqrge0d 11919 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
4828, 41, 46, 47lt2sqd 11295 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( S  <  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <->  ( S ^
2 )  <  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 ) ) )
4939, 48mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  S  < 
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
5028, 41ltnled 8982 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S  <  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <->  -.  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  S
) )
5149, 50mpbid 201 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  S )
525breq2i 4047 . . . . . . . . 9  |-  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  S  <->  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  sup ( R ,  RR ,  `'  <  ) )
53 infmrgelb 9750 . . . . . . . . . 10  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  e.  RR )  ->  ( ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  w
) )
5418, 19, 25, 41, 53syl31anc 1185 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w ) )
5552, 54syl5bb 248 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  S  <->  A. w  e.  R  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  w
) )
5615raleqi 2753 . . . . . . . . 9  |-  ( A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  w 
<-> 
A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w )
57 fvex 5555 . . . . . . . . . . 11  |-  ( N `
 ( A M y ) )  e. 
_V
5857rgenw 2623 . . . . . . . . . 10  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
59 eqid 2296 . . . . . . . . . . 11  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
60 breq2 4043 . . . . . . . . . . 11  |-  ( w  =  ( N `  ( A M y ) )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  w 
<->  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) ) )
6159, 60ralrnmpt 5685 . . . . . . . . . 10  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) ) )
6258, 61ax-mp 8 . . . . . . . . 9  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) )
6356, 62bitri 240 . . . . . . . 8  |-  ( A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  w 
<-> 
A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) )
6455, 63syl6bb 252 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  S  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) ) )
6551, 64mtbid 291 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  -.  A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_ 
( N `  ( A M y ) ) )
66 rexnal 2567 . . . . . 6  |-  ( E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  -.  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) )
6765, 66sylibr 203 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_ 
( N `  ( A M y ) ) )
6832adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  ( 1  /  n ) )  e.  RR )
69 phnv 21408 . . . . . . . . . . . . 13  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
7010, 69syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  NrmCVec )
7170ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  U  e.  NrmCVec )
7212ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  A  e.  X )
73 inss1 3402 . . . . . . . . . . . . . . . 16  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
7473, 11sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
75 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( SubSp `  U )  =  (
SubSp `  U )
766, 9, 75sspba 21319 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
7770, 74, 76syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  C_  X )
7877adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  Y  C_  X )
7978sselda 3193 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  y  e.  X )
806, 7nvmcl 21221 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
8171, 72, 79, 80syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( A M y )  e.  X )
826, 8nvcl 21241 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
8371, 81, 82syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
8483resqcld 11287 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( N `  ( A M y ) ) ^ 2 )  e.  RR )
8568, 84letrid 8985 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( ( S ^
2 )  +  ( 1  /  n ) )  <_  ( ( N `  ( A M y ) ) ^ 2 )  \/  ( ( N `  ( A M y ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
8685ord 366 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( -.  ( ( S ^
2 )  +  ( 1  /  n ) )  <_  ( ( N `  ( A M y ) ) ^ 2 )  -> 
( ( N `  ( A M y ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
8741adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  e.  RR )
8847adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  0  <_  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
896, 8nvge0 21256 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
9071, 81, 89syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
9187, 83, 88, 90le2sqd 11296 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) ^
2 )  <_  (
( N `  ( A M y ) ) ^ 2 ) ) )
9238adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  =  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
9392breq1d 4049 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  <_  ( ( N `
 ( A M y ) ) ^
2 )  <->  ( ( S ^ 2 )  +  ( 1  /  n
) )  <_  (
( N `  ( A M y ) ) ^ 2 ) ) )
9491, 93bitrd 244 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  ( ( S ^ 2 )  +  ( 1  /  n
) )  <_  (
( N `  ( A M y ) ) ^ 2 ) ) )
9594notbid 285 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( -.  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  -.  (
( S ^ 2 )  +  ( 1  /  n ) )  <_  ( ( N `
 ( A M y ) ) ^
2 ) ) )
966, 7, 8, 13imsdval 21271 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  =  ( N `  ( A M y ) ) )
9771, 72, 79, 96syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( A D y )  =  ( N `  ( A M y ) ) )
9897oveq1d 5889 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( A D y ) ^ 2 )  =  ( ( N `
 ( A M y ) ) ^
2 ) )
9998breq1d 4049 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( N `  ( A M y ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) ) )
10086, 95, 993imtr4d 259 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( -.  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  ->  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
101100reximdva 2668 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  ->  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
10267, 101mpd 14 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) )
103102ralrimiva 2639 . . 3  |-  ( ph  ->  A. n  e.  NN  E. y  e.  Y  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
104 fvex 5555 . . . . 5  |-  ( BaseSet `  W )  e.  _V
1059, 104eqeltri 2366 . . . 4  |-  Y  e. 
_V
106 nnenom 11058 . . . 4  |-  NN  ~~  om
107 oveq2 5882 . . . . . 6  |-  ( y  =  ( f `  n )  ->  ( A D y )  =  ( A D ( f `  n ) ) )
108107oveq1d 5889 . . . . 5  |-  ( y  =  ( f `  n )  ->  (
( A D y ) ^ 2 )  =  ( ( A D ( f `  n ) ) ^
2 ) )
109108breq1d 4049 . . . 4  |-  ( y  =  ( f `  n )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( A D ( f `  n ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
110105, 106, 109axcc4 8081 . . 3  |-  ( A. n  e.  NN  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) )  ->  E. f ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
111103, 110syl 15 . 2  |-  ( ph  ->  E. f ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
11210adantr 451 . . . . 5  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  U  e.  CPreHil OLD )
11311adantr 451 . . . . 5  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  W  e.  ( ( SubSp `  U )  i^i  CBan ) )
11412adantr 451 . . . . 5  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  A  e.  X
)
115 simprl 732 . . . . 5  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  f : NN --> Y )
116 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  A. n  e.  NN  ( ( A D ( f `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
117 fveq2 5541 . . . . . . . . . 10  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
118117oveq2d 5890 . . . . . . . . 9  |-  ( n  =  k  ->  ( A D ( f `  n ) )  =  ( A D ( f `  k ) ) )
119118oveq1d 5889 . . . . . . . 8  |-  ( n  =  k  ->  (
( A D ( f `  n ) ) ^ 2 )  =  ( ( A D ( f `  k ) ) ^
2 ) )
120 oveq2 5882 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
121120oveq2d 5890 . . . . . . . 8  |-  ( n  =  k  ->  (
( S ^ 2 )  +  ( 1  /  n ) )  =  ( ( S ^ 2 )  +  ( 1  /  k
) ) )
122119, 121breq12d 4052 . . . . . . 7  |-  ( n  =  k  ->  (
( ( A D ( f `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( A D ( f `  k ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  k ) ) ) )
123122rspccva 2896 . . . . . 6  |-  ( ( A. n  e.  NN  ( ( A D ( f `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  /\  k  e.  NN )  ->  (
( A D ( f `  k ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  k
) ) )
124116, 123sylan 457 . . . . 5  |-  ( ( ( ph  /\  (
f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  /\  k  e.  NN )  ->  ( ( A D ( f `  k ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  k ) ) )
125 eqid 2296 . . . . 5  |-  ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  f
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )  =  ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  f
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )
1266, 7, 8, 9, 112, 113, 114, 13, 14, 15, 5, 115, 124, 125minvecolem4 21475 . . . 4  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
127126ex 423 . . 3  |-  ( ph  ->  ( ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
128127exlimdv 1626 . 2  |-  ( ph  ->  ( E. f ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
129111, 128mpd 14 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   ^cexp 11120   sqrcsqr 11734   MetOpencmopn 16388   ~~> tclm 16972   NrmCVeccnv 21156   BaseSetcba 21158   -vcnsb 21161   normCVcnmcv 21162   IndMetcims 21163   SubSpcss 21313   CPreHil OLDccphlo 21406   CBanccbn 21457
This theorem is referenced by:  minvecolem7  21478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-icc 10679  df-fl 10941  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lm 16975  df-haus 17059  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-cfil 18697  df-cau 18698  df-cmet 18699  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-ssp 21314  df-ph 21407  df-cbn 21458
  Copyright terms: Public domain W3C validator