MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Unicode version

Theorem minvecolem6 22345
Description: Lemma for minveco 22347. Any minimal point is less than  S away from  A. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
Assertion
Ref Expression
minvecolem6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem6
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
2 phnv 22276 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
43adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  U  e.  NrmCVec )
5 minveco.a . . . . . . 7  |-  ( ph  ->  A  e.  X )
65adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  A  e.  X )
7 inss1 3529 . . . . . . . . 9  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
8 minveco.w . . . . . . . . 9  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
97, 8sseldi 3314 . . . . . . . 8  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
10 minveco.x . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
11 minveco.y . . . . . . . . 9  |-  Y  =  ( BaseSet `  W )
12 eqid 2412 . . . . . . . . 9  |-  ( SubSp `  U )  =  (
SubSp `  U )
1310, 11, 12sspba 22187 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
143, 9, 13syl2anc 643 . . . . . . 7  |-  ( ph  ->  Y  C_  X )
1514sselda 3316 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  x  e.  X )
16 minveco.m . . . . . . 7  |-  M  =  ( -v `  U
)
17 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
18 minveco.d . . . . . . 7  |-  D  =  ( IndMet `  U )
1910, 16, 17, 18imsdval 22139 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  x  e.  X )  ->  ( A D x )  =  ( N `  ( A M x ) ) )
204, 6, 15, 19syl3anc 1184 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( A D x )  =  ( N `  ( A M x ) ) )
2120oveq1d 6063 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( A D x ) ^ 2 )  =  ( ( N `
 ( A M x ) ) ^
2 ) )
22 minveco.s . . . . . . . 8  |-  S  =  sup ( R ,  RR ,  `'  <  )
23 minveco.j . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  D )
24 minveco.r . . . . . . . . . . . 12  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 22337 . . . . . . . . . . 11  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
2625adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
2726simp1d 969 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  R  C_  RR )
2826simp2d 970 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  R  =/=  (/) )
29 0re 9055 . . . . . . . . . . 11  |-  0  e.  RR
3029a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  0  e.  RR )
3126simp3d 971 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  A. w  e.  R  0  <_  w )
32 breq1 4183 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
3332ralbidv 2694 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
3433rspcev 3020 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
3530, 31, 34syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
36 infmrcl 9951 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
3727, 28, 35, 36syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Y )  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
3822, 37syl5eqel 2496 . . . . . . 7  |-  ( (
ph  /\  x  e.  Y )  ->  S  e.  RR )
3938resqcld 11512 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  ( S ^ 2 )  e.  RR )
4039recnd 9078 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( S ^ 2 )  e.  CC )
4140addid1d 9230 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( S ^ 2 )  +  0 )  =  ( S ^
2 ) )
4221, 41breq12d 4193 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  ( ( N `  ( A M x ) ) ^ 2 )  <_ 
( S ^ 2 ) ) )
4310, 16nvmcl 22089 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  x  e.  X )  ->  ( A M x )  e.  X )
444, 6, 15, 43syl3anc 1184 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( A M x )  e.  X )
4510, 17nvcl 22109 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A M x )  e.  X )  ->  ( N `  ( A M x ) )  e.  RR )
464, 44, 45syl2anc 643 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  ( N `  ( A M x ) )  e.  RR )
4710, 17nvge0 22124 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A M x )  e.  X )  ->  0  <_  ( N `  ( A M x ) ) )
484, 44, 47syl2anc 643 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  ( N `  ( A M x ) ) )
49 infmrgelb 9952 . . . . . . 7  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
5027, 28, 35, 30, 49syl31anc 1187 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
5131, 50mpbird 224 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
5251, 22syl6breqr 4220 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  S )
5346, 38, 48, 52le2sqd 11521 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  S  <->  ( ( N `  ( A M x ) ) ^ 2 )  <_ 
( S ^ 2 ) ) )
5422breq2i 4188 . . . 4  |-  ( ( N `  ( A M x ) )  <_  S  <->  ( N `  ( A M x ) )  <_  sup ( R ,  RR ,  `'  <  ) )
55 infmrgelb 9952 . . . . 5  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  ( N `
 ( A M x ) )  e.  RR )  ->  (
( N `  ( A M x ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w ) )
5627, 28, 35, 46, 55syl31anc 1187 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w ) )
5754, 56syl5bb 249 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  S  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5842, 53, 573bitr2d 273 . 2  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5924raleqi 2876 . . 3  |-  ( A. w  e.  R  ( N `  ( A M x ) )  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( N `
 ( A M x ) )  <_  w )
60 fvex 5709 . . . . 5  |-  ( N `
 ( A M y ) )  e. 
_V
6160rgenw 2741 . . . 4  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
62 eqid 2412 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
63 breq2 4184 . . . . 5  |-  ( w  =  ( N `  ( A M y ) )  ->  ( ( N `  ( A M x ) )  <_  w  <->  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
6462, 63ralrnmpt 5845 . . . 4  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
6561, 64ax-mp 8 . . 3  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
6659, 65bitri 241 . 2  |-  ( A. w  e.  R  ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
6758, 66syl6bb 253 1  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   E.wrex 2675   _Vcvv 2924    i^i cin 3287    C_ wss 3288   (/)c0 3596   class class class wbr 4180    e. cmpt 4234   `'ccnv 4844   ran crn 4846   ` cfv 5421  (class class class)co 6048   supcsup 7411   RRcr 8953   0cc0 8954    + caddc 8957    < clt 9084    <_ cle 9085   2c2 10013   ^cexp 11345   MetOpencmopn 16654   NrmCVeccnv 22024   BaseSetcba 22026   -vcnsb 22029   normCVcnmcv 22030   IndMetcims 22031   SubSpcss 22181   CPreHil OLDccphlo 22274   CBanccbn 22325
This theorem is referenced by:  minvecolem7  22346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-grpo 21740  df-gid 21741  df-ginv 21742  df-gdiv 21743  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-vs 22039  df-nmcv 22040  df-ims 22041  df-ssp 22182  df-ph 22275  df-cbn 22326
  Copyright terms: Public domain W3C validator