MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Unicode version

Theorem minvecolem6 21461
Description: Lemma for minveco 21463. Any minimal point is less than  S away from  A. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
Assertion
Ref Expression
minvecolem6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem6
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
2 phnv 21392 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
31, 2syl 15 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
43adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  U  e.  NrmCVec )
5 minveco.a . . . . . . 7  |-  ( ph  ->  A  e.  X )
65adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  A  e.  X )
7 inss1 3389 . . . . . . . . 9  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
8 minveco.w . . . . . . . . 9  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
97, 8sseldi 3178 . . . . . . . 8  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
10 minveco.x . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
11 minveco.y . . . . . . . . 9  |-  Y  =  ( BaseSet `  W )
12 eqid 2283 . . . . . . . . 9  |-  ( SubSp `  U )  =  (
SubSp `  U )
1310, 11, 12sspba 21303 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
143, 9, 13syl2anc 642 . . . . . . 7  |-  ( ph  ->  Y  C_  X )
1514sselda 3180 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  x  e.  X )
16 minveco.m . . . . . . 7  |-  M  =  ( -v `  U
)
17 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
18 minveco.d . . . . . . 7  |-  D  =  ( IndMet `  U )
1910, 16, 17, 18imsdval 21255 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  x  e.  X )  ->  ( A D x )  =  ( N `  ( A M x ) ) )
204, 6, 15, 19syl3anc 1182 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( A D x )  =  ( N `  ( A M x ) ) )
2120oveq1d 5873 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( A D x ) ^ 2 )  =  ( ( N `
 ( A M x ) ) ^
2 ) )
22 minveco.s . . . . . . . 8  |-  S  =  sup ( R ,  RR ,  `'  <  )
23 minveco.j . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  D )
24 minveco.r . . . . . . . . . . . 12  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 21453 . . . . . . . . . . 11  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
2625adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
2726simp1d 967 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  R  C_  RR )
2826simp2d 968 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  R  =/=  (/) )
29 0re 8838 . . . . . . . . . . 11  |-  0  e.  RR
3029a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  0  e.  RR )
3126simp3d 969 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  A. w  e.  R  0  <_  w )
32 breq1 4026 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
3332ralbidv 2563 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
3433rspcev 2884 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
3530, 31, 34syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
36 infmrcl 9733 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
3727, 28, 35, 36syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Y )  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
3822, 37syl5eqel 2367 . . . . . . 7  |-  ( (
ph  /\  x  e.  Y )  ->  S  e.  RR )
3938resqcld 11271 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  ( S ^ 2 )  e.  RR )
4039recnd 8861 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( S ^ 2 )  e.  CC )
4140addid1d 9012 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( S ^ 2 )  +  0 )  =  ( S ^
2 ) )
4221, 41breq12d 4036 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  ( ( N `  ( A M x ) ) ^ 2 )  <_ 
( S ^ 2 ) ) )
4310, 16nvmcl 21205 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  x  e.  X )  ->  ( A M x )  e.  X )
444, 6, 15, 43syl3anc 1182 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( A M x )  e.  X )
4510, 17nvcl 21225 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A M x )  e.  X )  ->  ( N `  ( A M x ) )  e.  RR )
464, 44, 45syl2anc 642 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  ( N `  ( A M x ) )  e.  RR )
4710, 17nvge0 21240 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A M x )  e.  X )  ->  0  <_  ( N `  ( A M x ) ) )
484, 44, 47syl2anc 642 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  ( N `  ( A M x ) ) )
49 infmrgelb 9734 . . . . . . 7  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
5027, 28, 35, 30, 49syl31anc 1185 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
5131, 50mpbird 223 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
5251, 22syl6breqr 4063 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  S )
5346, 38, 48, 52le2sqd 11280 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  S  <->  ( ( N `  ( A M x ) ) ^ 2 )  <_ 
( S ^ 2 ) ) )
5422breq2i 4031 . . . 4  |-  ( ( N `  ( A M x ) )  <_  S  <->  ( N `  ( A M x ) )  <_  sup ( R ,  RR ,  `'  <  ) )
55 infmrgelb 9734 . . . . 5  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  ( N `
 ( A M x ) )  e.  RR )  ->  (
( N `  ( A M x ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w ) )
5627, 28, 35, 46, 55syl31anc 1185 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w ) )
5754, 56syl5bb 248 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  S  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5842, 53, 573bitr2d 272 . 2  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5924raleqi 2740 . . 3  |-  ( A. w  e.  R  ( N `  ( A M x ) )  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( N `
 ( A M x ) )  <_  w )
60 fvex 5539 . . . . 5  |-  ( N `
 ( A M y ) )  e. 
_V
6160rgenw 2610 . . . 4  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
62 eqid 2283 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
63 breq2 4027 . . . . 5  |-  ( w  =  ( N `  ( A M y ) )  ->  ( ( N `  ( A M x ) )  <_  w  <->  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
6462, 63ralrnmpt 5669 . . . 4  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
6561, 64ax-mp 8 . . 3  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
6659, 65bitri 240 . 2  |-  ( A. w  e.  R  ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
6758, 66syl6bb 252 1  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   ran crn 4690   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736   0cc0 8737    + caddc 8740    < clt 8867    <_ cle 8868   2c2 9795   ^cexp 11104   MetOpencmopn 16372   NrmCVeccnv 21140   BaseSetcba 21142   -vcnsb 21145   normCVcnmcv 21146   IndMetcims 21147   SubSpcss 21297   CPreHil OLDccphlo 21390   CBanccbn 21441
This theorem is referenced by:  minvecolem7  21462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-ssp 21298  df-ph 21391  df-cbn 21442
  Copyright terms: Public domain W3C validator