MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Unicode version

Theorem minvecolem7 21478
Description: Lemma for minveco 21479. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
Assertion
Ref Expression
minvecolem7  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem7
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3  |-  X  =  ( BaseSet `  U )
2 minveco.m . . 3  |-  M  =  ( -v `  U
)
3 minveco.n . . 3  |-  N  =  ( normCV `  U )
4 minveco.y . . 3  |-  Y  =  ( BaseSet `  W )
5 minveco.u . . 3  |-  ( ph  ->  U  e.  CPreHil OLD )
6 minveco.w . . 3  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
7 minveco.a . . 3  |-  ( ph  ->  A  e.  X )
8 minveco.d . . 3  |-  D  =  ( IndMet `  U )
9 minveco.j . . 3  |-  J  =  ( MetOpen `  D )
10 minveco.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
11 minveco.s . . 3  |-  S  =  sup ( R ,  RR ,  `'  <  )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 21476 . 2  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
135ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  U  e.  CPreHil OLD )
146ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  W  e.  ( ( SubSp `  U )  i^i  CBan ) )
157ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  A  e.  X
)
16 0re 8854 . . . . . . 7  |-  0  e.  RR
1716a1i 10 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  e.  RR )
18 0le0 9843 . . . . . . 7  |-  0  <_  0
1918a1i 10 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  <_  0
)
20 simplrl 736 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  x  e.  Y
)
21 simplrr 737 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  w  e.  Y
)
22 simprl 732 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
23 simprr 733 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 21470 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( x D w ) ^
2 )  <_  (
4  x.  0 ) )
2524ex 423 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  ->  (
( x D w ) ^ 2 )  <_  ( 4  x.  0 ) ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 21477 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
2726adantrr 697 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 21477 . . . . . 6  |-  ( (
ph  /\  w  e.  Y )  ->  (
( ( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
2928adantrl 696 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
3027, 29anbi12d 691 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  <->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) ) )
31 4cn 9836 . . . . . . 7  |-  4  e.  CC
3231mul01i 9018 . . . . . 6  |-  ( 4  x.  0 )  =  0
3332breq2i 4047 . . . . 5  |-  ( ( ( x D w ) ^ 2 )  <_  ( 4  x.  0 )  <->  ( (
x D w ) ^ 2 )  <_ 
0 )
34 phnv 21408 . . . . . . . . . . . 12  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
355, 34syl 15 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  NrmCVec )
3635adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  U  e.  NrmCVec )
371, 8imsmet 21276 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
3836, 37syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  D  e.  ( Met `  X ) )
39 inss1 3402 . . . . . . . . . . . . 13  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
4039, 6sseldi 3191 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
41 eqid 2296 . . . . . . . . . . . . 13  |-  ( SubSp `  U )  =  (
SubSp `  U )
421, 4, 41sspba 21319 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
4335, 40, 42syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  Y  C_  X )
4443adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  Y  C_  X )
45 simprl 732 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  Y )
4644, 45sseldd 3194 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  X )
47 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  Y )
4844, 47sseldd 3194 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  X )
49 metcl 17913 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
x D w )  e.  RR )
5038, 46, 48, 49syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  RR )
5150sqge0d 11288 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
0  <_  ( (
x D w ) ^ 2 ) )
5251biantrud 493 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  ( ( ( x D w ) ^ 2 )  <_  0  /\  0  <_  ( ( x D w ) ^
2 ) ) ) )
5350resqcld 11287 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w ) ^ 2 )  e.  RR )
54 letri3 8923 . . . . . . 7  |-  ( ( ( ( x D w ) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  ( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5553, 16, 54sylancl 643 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5650recnd 8877 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  CC )
57 sqeq0 11184 . . . . . . . 8  |-  ( ( x D w )  e.  CC  ->  (
( ( x D w ) ^ 2 )  =  0  <->  (
x D w )  =  0 ) )
5856, 57syl 15 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( x D w )  =  0 ) )
59 meteq0 17920 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
( x D w )  =  0  <->  x  =  w ) )
6038, 46, 48, 59syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w )  =  0  <-> 
x  =  w ) )
6158, 60bitrd 244 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
x  =  w ) )
6252, 55, 613bitr2d 272 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  x  =  w ) )
6333, 62syl5bb 248 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  (
4  x.  0 )  <-> 
x  =  w ) )
6425, 30, 633imtr3d 258 . . 3  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w )
)
6564ralrimivva 2648 . 2  |-  ( ph  ->  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w )
)
66 oveq2 5882 . . . . . 6  |-  ( x  =  w  ->  ( A M x )  =  ( A M w ) )
6766fveq2d 5545 . . . . 5  |-  ( x  =  w  ->  ( N `  ( A M x ) )  =  ( N `  ( A M w ) ) )
6867breq1d 4049 . . . 4  |-  ( x  =  w  ->  (
( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
6968ralbidv 2576 . . 3  |-  ( x  =  w  ->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
7069reu4 2972 . 2  |-  ( E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w ) ) )
7112, 65, 70sylanbrc 645 1  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   E!wreu 2558    i^i cin 3164    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   ran crn 4706   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   2c2 9811   4c4 9813   ^cexp 11120   Metcme 16386   MetOpencmopn 16388   NrmCVeccnv 21156   BaseSetcba 21158   -vcnsb 21161   normCVcnmcv 21162   IndMetcims 21163   SubSpcss 21313   CPreHil OLDccphlo 21406   CBanccbn 21457
This theorem is referenced by:  minveco  21479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-icc 10679  df-fl 10941  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lm 16975  df-haus 17059  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-cfil 18697  df-cau 18698  df-cmet 18699  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-ssp 21314  df-ph 21407  df-cbn 21458
  Copyright terms: Public domain W3C validator