HomeHome Metamath Proof Explorer
Theorem List (p. 14 of 323)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21606)
  Hilbert Space Explorer  Hilbert Space Explorer
(21607-23129)
  Users' Mathboxes  Users' Mathboxes
(23130-32206)
 

Theorem List for Metamath Proof Explorer - 1301-1400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnanbi1d 1301 Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  -/\  th )  <->  ( ch  -/\  th )
 ) )
 
Theoremnanbi2d 1302 Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  -/\  ps )  <->  ( th  -/\  ch )
 ) )
 
Theoremnanbi12d 1303 Join two logical equivalences with anti-conjunction. (Contributed by Scott Fenton, 2-Jan-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  -/\  th )  <->  ( ch  -/\  ta )
 ) )
 
1.2.10  Logical 'xor'
 
Syntaxwxo 1304 Extend wff definition to include exclusive disjunction ('xor').
 wff  ( ph  \/_  ps )
 
Definitiondf-xor 1305 Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. After we define the constant true  T. (df-tru 1319) and the constant false  F. (df-fal 1320), we will be able to prove these truth table values:  ( (  T.  \/_  T.  ) 
<->  F.  ) (truxortru 1358), 
( (  T.  \/_  F.  )  <->  T.  ) (truxorfal 1359),  ( (  F.  \/_  T.  )  <->  T.  ) (falxortru 1360), and  ( (  F.  \/_  F.  )  <->  F.  ) (falxorfal 1361). Contrast with  /\ (df-an 360), 
\/ (df-or 359), 
-> (wi 4), and  -/\ (df-nan 1288) . (Contributed by FL, 22-Nov-2010.)
 |-  ( ( ph  \/_  ps ) 
 <->  -.  ( ph  <->  ps ) )
 
Theoremxnor 1306 Two ways to write XNOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( ph  <->  ps )  <->  -.  ( ph  \/_  ps ) )
 
Theoremxorcom 1307  \/_ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ps  \/_  ph )
 )
 
Theoremxorass 1308  \/_ is associative. (Contributed by FL, 22-Nov-2010.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( ( ph  \/_ 
 ps )  \/_  ch ) 
 <->  ( ph  \/_  ( ps  \/_  ch ) ) )
 
Theoremexcxor 1309 This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps ) ) )
 
Theoremxor2 1310 Two ways to express "exclusive or." (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
 
Theoremxorneg1 1311  \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( -.  ph  \/_ 
 ps )  <->  -.  ( ph  \/_  ps ) )
 
Theoremxorneg2 1312  \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( ph  \/_  -.  ps )  <->  -.  ( ph  \/_  ps ) )
 
Theoremxorneg 1313  \/_ is unchanged under negation of both arguments. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( -.  ph  \/_ 
 -.  ps )  <->  ( ph  \/_  ps ) )
 
Theoremxorbi12i 1314 Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  \/_  ch ) 
 <->  ( ps  \/_  th )
 )
 
Theoremxorbi12d 1315 Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  \/_  th )  <->  ( ch  \/_  ta )
 ) )
 
1.2.11  True and false constants
 
Syntaxwtru 1316  T. is a wff.
 wff  T.
 
Syntaxwfal 1317  F. is a wff.
 wff  F.
 
Theoremtrujust 1318 Soundness justification theorem for df-tru 1319. (Contributed by Mario Carneiro, 17-Nov-2013.)
 |-  ( ( ph  <->  ph )  <->  ( ps  <->  ps ) )
 
Definitiondf-tru 1319 Definition of  T., a tautology.  T. is a constant true. In this definition biid 227 is used as an antecedent, however, any true wff, such as an axiom, can be used in its place. (Contributed by Anthony Hart, 13-Oct-2010.)
 |-  (  T.  <->  ( ph  <->  ph ) )
 
Definitiondf-fal 1320 Definition of  F., a contradiction.  F. is a constant false. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  (  F.  <->  -.  T.  )
 
Theoremtru 1321  T. is provable. (Contributed by Anthony Hart, 13-Oct-2010.)
 |- 
 T.
 
Theoremfal 1322  F. is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.)
 |- 
 -.  F.
 
Theoremtrud 1323 Eliminate  T. as an antecedent. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  (  T.  ->  ph )   =>    |-  ph
 
Theoremtbtru 1324 If something is true, it outputs 
T.. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  ( ph  <->  ( ph  <->  T.  ) )
 
Theoremnbfal 1325 If something is not true, it outputs  F.. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  ( -.  ph  <->  ( ph  <->  F.  ) )
 
Theorembitru 1326 A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  ph   =>    |-  ( ph  <->  T.  )
 
Theorembifal 1327 A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
 |- 
 -.  ph   =>    |-  ( ph  <->  F.  )
 
Theoremfalim 1328  F. implies anything. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
 |-  (  F.  ->  ph )
 
Theoremfalimd 1329  F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\  F.  )  ->  ps )
 
Theorema1tru 1330 Anything implies  T.. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
 |-  ( ph  ->  T.  )
 
Theoremtruan 1331 True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.)
 |-  ( (  T.  /\  ph )  <->  ph )
 
Theoremdfnot 1332 Given falsum, we can define the negation of a wff  ph as the statement that a contradiction follows from assuming  ph. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( -.  ph  <->  ( ph  ->  F.  ) )
 
Theoreminegd 1333 Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\  ps )  ->  F.  )   =>    |-  ( ph  ->  -. 
 ps )
 
Theoremefald 1334 Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\  -.  ps )  ->  F.  )   =>    |-  ( ph  ->  ps )
 
Theorempm2.21fal 1335 If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  F.  )
 
1.2.12  Truth tables

Some sources define operations on true/false values using truth tables. These tables show the results of their operations for all possible combinations of true ( T.) and false ( F.). Here we show that our definitions and axioms produce equivalent results for  /\ (conjunction aka logical 'and') df-an 360,  \/ (disjunction aka logical inclusive 'or') df-or 359,  -> (implies) wi 4,  -. (not) wn 3,  <-> (logical equivalence) df-bi 177,  -/\ (nand aka Sheffer stroke) df-nan 1288, and  \/_ (exclusive or) df-xor 1305.

 
Theoremtruantru 1336 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  T.  /\  T.  )  <->  T.  )
 
Theoremtruanfal 1337 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  T.  /\  F.  )  <->  F.  )
 
Theoremfalantru 1338 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  F.  /\  T.  )  <->  F.  )
 
Theoremfalanfal 1339 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  F.  /\  F.  )  <->  F.  )
 
Theoremtruortru 1340 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  T.  \/  T.  )  <->  T.  )
 
Theoremtruorfal 1341 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  T.  \/  F.  )  <->  T.  )
 
Theoremfalortru 1342 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  F.  \/  T.  )  <->  T.  )
 
Theoremfalorfal 1343 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  F.  \/  F.  )  <->  F.  )
 
Theoremtruimtru 1344 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  T.  ->  T.  )  <->  T.  )
 
Theoremtruimfal 1345 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  T.  ->  F.  )  <->  F.  )
 
Theoremfalimtru 1346 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  F.  ->  T.  )  <->  T.  )
 
Theoremfalimfal 1347 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( (  F.  ->  F.  )  <->  T.  )
 
Theoremnottru 1348 A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( -.  T.  <->  F.  )
 
Theoremnotfal 1349 A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( -.  F.  <->  T.  )
 
Theoremtrubitru 1350 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  T.  <->  T.  )  <->  T.  )
 
Theoremtrubifal 1351 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  T.  <->  F.  )  <->  F.  )
 
Theoremfalbitru 1352 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  F.  <->  T.  )  <->  F.  )
 
Theoremfalbifal 1353 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  F.  <->  F.  )  <->  T.  )
 
Theoremtrunantru 1354 A  -/\ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  T.  -/\  T.  )  <->  F.  )
 
Theoremtrunanfal 1355 A  -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  T.  -/\  F.  )  <->  T.  )
 
Theoremfalnantru 1356 A  -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  F.  -/\  T.  )  <->  T.  )
 
Theoremfalnanfal 1357 A  -/\ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( (  F.  -/\  F.  )  <->  T.  )
 
Theoremtruxortru 1358 A  \/_ identity. (Contributed by David A. Wheeler, 8-May-2015.)
 |-  ( (  T.  \/_  T.  )  <->  F.  )
 
Theoremtruxorfal 1359 A  \/_ identity. (Contributed by David A. Wheeler, 8-May-2015.)
 |-  ( (  T.  \/_  F.  )  <->  T.  )
 
Theoremfalxortru 1360 A  \/_ identity. (Contributed by David A. Wheeler, 9-May-2015.)
 |-  ( (  F.  \/_  T.  )  <->  T.  )
 
Theoremfalxorfal 1361 A  \/_ identity. (Contributed by David A. Wheeler, 9-May-2015.)
 |-  ( (  F.  \/_  F.  )  <->  F.  )
 
1.2.13  Auxiliary theorems for Alan Sare's virtual deduction tool, part 1
 
Theoremee22 1362 Virtual deduction rule e22 28177 without virtual deduction connectives. Special theorem needed for Alan Sare's virtual deduction translation tool. (Contributed by Alan Sare, 2-May-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  th ) )   &    |-  ( ch  ->  ( th  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ta ) )
 
Theoremee12an 1363 e12an 28243 without virtual deduction connectives. Special theorem needed for Alan Sare's virtual deduction translation tool. (Contributed by Alan Sare, 28-Oct-2011.) TODO: this is frequently used; come up with better label.
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ch  ->  th ) )   &    |-  ( ( ps 
 /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ch  ->  ta ) )
 
Theoremee23 1364 e23 28273 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  ( th  ->  ta )
 ) )   &    |-  ( ch  ->  ( ta  ->  et )
 )   =>    |-  ( ph  ->  ( ps  ->  ( th  ->  et ) ) )
 
Theoremexbir 1365 Exportation implication also converting head from biconditional to conditional. This proof is exbirVD 28374 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ( ( ph  /\ 
 ps )  ->  ( ch 
 <-> 
 th ) )  ->  ( ph  ->  ( ps  ->  ( th  ->  ch )
 ) ) )
 
Theorem3impexp 1366 impexp 433 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  ->  th )  <->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
 
Theorem3impexpbicom 1367 3impexp 1366 with biconditional consequent of antecedent that is commuted in consequent. Derived automatically from 3impexpVD 28377. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  ->  ( th  <->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) )
 
Theorem3impexpbicomi 1368 Deduction form of 3impexpbicom 1367. Derived automatically from 3impexpbicomiVD 28379. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th 
 <->  ta ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )
 
Theoremancomsimp 1369 Closed form of ancoms 439. Derived automatically from ancomsimpVD 28386. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
 
Theoremexp3acom3r 1370 Export and commute antecedents. (Contributed by Alan Sare, 18-Mar-2012.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ps  ->  ( ch  ->  ( ph  ->  th ) ) )
 
Theoremexp3acom23g 1371 Implication form of exp3acom23 1372. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ( ph  ->  ( ( ps  /\  ch )  ->  th ) )  <->  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) ) )
 
Theoremexp3acom23 1372 The exportation deduction exp3a 425 with commutation of the conjoined wwfs. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
 
Theoremsimplbi2comg 1373 Implication form of simplbi2com 1374. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ( ph  <->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
 
Theoremsimplbi2com 1374 A deduction eliminating a conjunct, similar to simplbi2 608. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ps  ->  ph ) )
 
Theoremee21 1375 e21 28248 without virtual deductions. (Contributed by Alan Sare, 18-Mar-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  th )   &    |-  ( ch  ->  ( th  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ta ) )
 
Theoremee10 1376 e10 28201 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) TODO: this is frequently used; come up with better label.
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  ( ps  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  th )
 
Theoremee02 1377 e02 28204 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
 |-  ph   &    |-  ( ps  ->  ( ch  ->  th ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   =>    |-  ( ps  ->  ( ch  ->  ta ) )
 
1.2.14  Half-adders and full adders in propositional calculus

Propositional calculus deals with truth values, which can be interpreted as bits. Using this, we can define the half-adder in pure propositional calculus, and show its basic properties.

 
Syntaxwhad 1378 Define the half adder (triple XOR). (Contributed by Mario Carneiro, 4-Sep-2016.)
 wff hadd ( ph ,  ps ,  ch )
 
Syntaxwcad 1379 Define the half adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
 wff cadd ( ph ,  ps ,  ch )
 
Definitiondf-had 1380 Define the half adder (triple XOR). (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (hadd ( ph ,  ps ,  ch )  <->  ( ( ph  \/_ 
 ps )  \/_  ch ) )
 
Definitiondf-cad 1381 Define the half adder carry, which is true when at least two arguments are true. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (cadd ( ph ,  ps ,  ch )  <->  ( ( ph  /\ 
 ps )  \/  ( ch  /\  ( ph  \/_  ps ) ) ) )
 
Theoremhadbi123d 1382 Equality theorem for half adder. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   &    |-  ( ph  ->  ( et  <->  ze ) )   =>    |-  ( ph  ->  (hadd ( ps ,  th ,  et )  <-> hadd ( ch ,  ta ,  ze ) ) )
 
Theoremcadbi123d 1383 Equality theorem for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   &    |-  ( ph  ->  ( et  <->  ze ) )   =>    |-  ( ph  ->  (cadd ( ps ,  th ,  et )  <-> cadd ( ch ,  ta ,  ze ) ) )
 
Theoremhadbi123i 1384 Equality theorem for half adder. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  (hadd ( ph ,  ch ,  ta )  <-> hadd ( ps ,  th ,  et ) )
 
Theoremcadbi123i 1385 Equality theorem for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  (cadd ( ph ,  ch ,  ta )  <-> cadd ( ps ,  th ,  et ) )
 
Theoremhadass 1386 Associative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (hadd ( ph ,  ps ,  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )
 
Theoremhadbi 1387 The half adder is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (hadd ( ph ,  ps ,  ch )  <->  ( ( ph  <->  ps ) 
 <->  ch ) )
 
Theoremhadcoma 1388 Commutative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (hadd ( ph ,  ps ,  ch )  <-> hadd ( ps ,  ph ,  ch ) )
 
Theoremhadcomb 1389 Commutative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (hadd ( ph ,  ps ,  ch )  <-> hadd ( ph ,  ch ,  ps ) )
 
Theoremhadrot 1390 Rotation law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (hadd ( ph ,  ps ,  ch )  <-> hadd ( ps ,  ch ,  ph ) )
 
Theoremcador 1391 Write the adder carry in disjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (cadd ( ph ,  ps ,  ch )  <->  ( ( ph  /\ 
 ps )  \/  ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )
 
Theoremcadan 1392 Write the adder carry in conjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (cadd ( ph ,  ps ,  ch )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )  /\  ( ps  \/  ch )
 ) )
 
Theoremhadnot 1393 The half adder distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( -. hadd ( ph ,  ps ,  ch )  <-> hadd ( -.  ph ,  -.  ps ,  -.  ch ) )
 
Theoremcadnot 1394 The adder carry distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( -. cadd ( ph ,  ps ,  ch )  <-> cadd ( -.  ph ,  -.  ps ,  -.  ch ) )
 
Theoremcadcoma 1395 Commutative law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (cadd ( ph ,  ps ,  ch )  <-> cadd ( ps ,  ph ,  ch ) )
 
Theoremcadcomb 1396 Commutative law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (cadd ( ph ,  ps ,  ch )  <-> cadd ( ph ,  ch ,  ps ) )
 
Theoremcadrot 1397 Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  (cadd ( ph ,  ps ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )
 
Theoremcad1 1398 If one parameter is true, the adder carry is true exactly when at least one of the other parameters is true. (Contributed by Mario Carneiro, 8-Sep-2016.)
 |-  ( ch  ->  (cadd ( ph ,  ps ,  ch )  <->  ( ph  \/  ps ) ) )
 
Theoremcad11 1399 If two parameters are true, the adder carry is true. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ( ph  /\  ps )  -> cadd ( ph ,  ps ,  ch ) )
 
Theoremcad0 1400 If one parameter is false, the adder carry is true exactly when both of the other two parameters are true. (Contributed by Mario Carneiro, 8-Sep-2016.)
 |-  ( -.  ch  ->  (cadd ( ph ,  ps ,  ch )  <->  ( ph  /\  ps ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32206
  Copyright terms: Public domain < Previous  Next >