HomeHome Metamath Proof Explorer
Theorem List (p. 213 of 325)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22378)
  Hilbert Space Explorer  Hilbert Space Explorer
(22379-23901)
  Users' Mathboxes  Users' Mathboxes
(23902-32451)
 

Theorem List for Metamath Proof Explorer - 21201-21300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremselberg2lem 21201* Lemma for selberg2 21202. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n ) )  -  (
 (ψ `  x )  x.  ( log `  x ) ) )  /  x ) )  e.  O ( 1 )
 
Theoremselberg2 21202* Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O ( 1 )
 
Theoremselberg2b 21203* Convert eventual boundedness in selberg2 21202 to boundedness on any interval  [ A ,  +oo ). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 25-May-2016.)
 |- 
 E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) 
 <_  c
 
Theoremchpdifbndlem1 21204* Lemma for chpdifbnd 21206. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. z  e.  ( 1 [,)  +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z
 ) )  +  sum_ m  e.  ( 1 ... ( |_ `  z
 ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) ) 
 /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B )   &    |-  C  =  ( ( B  x.  ( A  +  1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )   &    |-  ( ph  ->  X  e.  (
 1 (,)  +oo ) )   &    |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )   =>    |-  ( ph  ->  (
 (ψ `  Y )  -  (ψ `  X )
 )  <_  ( (
 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X ) ) ) ) )
 
Theoremchpdifbndlem2 21205* Lemma for chpdifbnd 21206. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. z  e.  ( 1 [,)  +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z
 ) )  +  sum_ m  e.  ( 1 ... ( |_ `  z
 ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) ) 
 /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B )   &    |-  C  =  ( ( B  x.  ( A  +  1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )   =>    |-  ( ph  ->  E. c  e.  RR+  A. x  e.  ( 1 (,)  +oo ) A. y  e.  ( x [,] ( A  x.  x ) ) ( (ψ `  y )  -  (ψ `  x )
 )  <_  ( (
 2  x.  ( y  -  x ) )  +  ( c  x.  ( x  /  ( log `  x ) ) ) ) )
 
Theoremchpdifbnd 21206* A bound on the difference of nearby ψ values. Theorem 10.5.2 of [Shapiro], p. 427. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,)  +oo ) A. y  e.  ( x [,] ( A  x.  x ) ) ( (ψ `  y
 )  -  (ψ `  x ) )  <_  ( ( 2  x.  ( y  -  x ) )  +  (
 c  x.  ( x 
 /  ( log `  x ) ) ) ) )
 
Theoremlogdivbnd 21207* A bound on a sum of logs, used in pntlemk 21257. This is not as precise as logdivsum 21184 in its asymptotic behavior, but it is valid for all  N and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( N  e.  NN  -> 
 sum_ n  e.  (
 1 ... N ) ( ( log `  n )  /  n )  <_  ( ( ( ( log `  N )  +  1 ) ^
 2 )  /  2
 ) )
 
Theoremselberg3lem1 21208* Introduce a log weighting on the summands of  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n ), the core of selberg2 21202 (written here as  sum_ n  <_  x , Λ ( n )ψ (
x  /  n )). Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ k  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  k
 )  x.  ( log `  k ) )  -  ( (ψ `  y )  x.  ( log `  y
 ) ) )  /  y ) )  <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( 2  /  ( log `  x )
 )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n ) ) )  -  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) 
 /  x ) )  e.  O ( 1 ) )
 
Theoremselberg3lem2 21209* Lemma for selberg3 21210. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n ) ) )  -  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) 
 /  x ) )  e.  O ( 1 )
 
Theoremselberg3 21210* Introduce a log weighting on the summands of  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n ), the core of selberg2 21202 (written here as  sum_ n  <_  x , Λ ( n )ψ (
x  /  n )). Equation 10.6.7 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O ( 1 )
 
Theoremselberg4lem1 21211* Lemma for selberg4 21212. Equation 10.4.20 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( y  /  i ) ) ) )  /  y )  -  ( 2  x.  ( log `  y
 ) ) ) ) 
 <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( (
 sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  x.  ( ( log `  m )  +  (ψ `  ( ( x  /  n )  /  m ) ) ) ) )  /  ( x  x.  ( log `  x ) ) )  -  ( log `  x )
 ) )  e.  O ( 1 ) )
 
Theoremselberg4 21212* The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form  sum_ i j k  <_  x , Λ ( i )Λ ( j )Λ ( k ); we eliminate one of the nested sums by using the definition of ψ ( x )  =  sum_ k  <_  x , Λ ( k ). This statement can thus equivalently be written ψ
( x ) log
^ 2 ( x )  =  2 sum_ i
j k  <_  x , Λ ( i )Λ (
j )Λ ( k )  +  O ( x log x ). Equation 10.4.23 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  (
 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  (
 ( x  /  n )  /  m ) ) ) ) ) ) 
 /  x ) )  e.  O ( 1 )
 
Theorempntrval 21213* Define the residual of the second Chebyshev function. The goal is to have  R ( x )  e.  o ( x ), or  R ( x )  /  x  ~~> r  0. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( A  e.  RR+  ->  ( R `  A )  =  ( (ψ `  A )  -  A ) )
 
Theorempntrf 21214 Functionality of the residual. Lemma for pnt 21265. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  R : RR+ --> RR
 
Theorempntrmax 21215* There is a bound on the residual valid for all  x. (Contributed by Mario Carneiro, 9-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  c
 
Theorempntrsumo1 21216* A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  RR  |->  sum_
 n  e.  ( 1
 ... ( |_ `  x ) ) ( ( R `  n ) 
 /  ( n  x.  ( n  +  1
 ) ) ) )  e.  O ( 1 )
 
Theorempntrsumbnd 21217* A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  (
 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1
 ) ) ) ) 
 <_  c
 
Theorempntrsumbnd2 21218* A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  (
 k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1
 ) ) ) ) 
 <_  c
 
Theoremselbergr 21219* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  RR+  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
 )  x.  ( R `
  ( x  /  d ) ) ) )  /  x ) )  e.  O ( 1 )
 
Theoremselberg3r 21220* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( R `
  x )  x.  ( log `  x ) )  +  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x ) )  e.  O ( 1 )
 
Theoremselberg4r 21221* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( R `
  x )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
 
Theoremselberg34r 21222* The sum of selberg3r 21220 and selberg4r 21221. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( R `
  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1
 ... ( |_ `  x ) ) ( ( R `  ( x 
 /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n )  x.  ( log `  n ) ) ) ) 
 /  ( log `  x ) ) )  /  x ) )  e.  O ( 1 )
 
Theorempntsval 21223* Define the "Selberg function", whose asymptotic behavior is the content of selberg 21199. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n )  x.  ( ( log `  n )  +  (ψ `  ( A  /  n ) ) ) ) )
 
Theorempntsf 21224* Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  S : RR --> RR
 
Theoremselbergs 21225* Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  ( x  e.  RR+  |->  ( ( ( S `
  x )  /  x )  -  (
 2  x.  ( log `  x ) ) ) )  e.  O ( 1 )
 
Theoremselbergsb 21226* Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |- 
 E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( ( ( S `
  x )  /  x )  -  (
 2  x.  ( log `  x ) ) ) )  <_  c
 
Theorempntsval2 21227* The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
 
Theorempntrlog2bndlem1 21228* The sum of selberg3r 21220 and selberg4r 21221. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
  n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O ( 1 )
 
Theorempntrlog2bndlem2 21229* Lemma for pntrlog2bnd 21235. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  (ψ `  y )  <_  ( A  x.  y ) )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
  ( x  /  ( n  +  1
 ) ) )  -  ( R `  ( x 
 /  n ) ) ) ) )  /  ( x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
 
Theorempntrlog2bndlem3 21230* Lemma for pntrlog2bnd 21235. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( ( S `
  y )  /  y )  -  (
 2  x.  ( log `  y ) ) ) )  <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  +  1 ) ) ) ) )  x.  (
 ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) ) )  /  ( x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
 
Theorempntrlog2bndlem4 21231* Lemma for pntrlog2bnd 21235. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   =>    |-  ( x  e.  (
 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( T `
  n )  -  ( T `  ( n  -  1 ) ) ) ) ) ) 
 /  x ) )  e.  <_ O ( 1 )
 
Theorempntrlog2bndlem5 21232* Lemma for pntrlog2bnd 21235. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
 ) )  <_  B )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) ) 
 /  x ) )  e.  <_ O ( 1 ) )
 
Theorempntrlog2bndlem6a 21233* Lemma for pntrlog2bndlem6 21234. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
 ) )  <_  B )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   =>    |-  ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( 1
 ... ( |_ `  x ) )  =  (
 ( 1 ... ( |_ `  ( x  /  A ) ) )  u.  ( ( ( |_ `  ( x 
 /  A ) )  +  1 ) ... ( |_ `  x ) ) ) )
 
Theorempntrlog2bndlem6 21234* Lemma for pntrlog2bnd 21235. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
 ) )  <_  B )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x ) )  e.  <_ O ( 1 ) )
 
Theorempntrlog2bnd 21235* A bound on  R ( x ) log ^ 2 ( x ). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x ) 
 <_  c )
 
Theorempntpbnd1a 21236* Lemma for pntpbnd 21239. (Contributed by Mario Carneiro, 11-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )   &    |-  X  =  ( exp `  (
 2  /  E )
 )   &    |-  ( ph  ->  Y  e.  ( X (,)  +oo ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( Y  <  N 
 /\  N  <_  ( K  x.  Y ) ) )   &    |-  ( ph  ->  ( abs `  ( R `  N ) )  <_  ( abs `  ( ( R `  ( N  +  1 ) )  -  ( R `  N ) ) ) )   =>    |-  ( ph  ->  ( abs `  ( ( R `  N )  /  N ) )  <_  E )
 
Theorempntpbnd1 21237* Lemma for pntpbnd 21239. (Contributed by Mario Carneiro, 11-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )   &    |-  X  =  ( exp `  (
 2  /  E )
 )   &    |-  ( ph  ->  Y  e.  ( X (,)  +oo ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ y  e.  (
 i ... j ) ( ( R `  y
 )  /  ( y  x.  ( y  +  1 ) ) ) ) 
 <_  A )   &    |-  C  =  ( A  +  2 )   &    |-  ( ph  ->  K  e.  ( ( exp `  ( C  /  E ) ) [,)  +oo ) )   &    |-  ( ph  ->  -.  E. y  e.  NN  ( ( Y  <  y  /\  y  <_  ( K  x.  Y ) )  /\  ( abs `  ( ( R `  y )  /  y
 ) )  <_  E ) )   =>    |-  ( ph  ->  sum_ n  e.  ( ( ( |_ `  Y )  +  1 ) ... ( |_ `  ( K  x.  Y ) ) ) ( abs `  ( ( R `  n )  /  ( n  x.  ( n  +  1 )
 ) ) )  <_  A )
 
Theorempntpbnd2 21238* Lemma for pntpbnd 21239. (Contributed by Mario Carneiro, 11-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )   &    |-  X  =  ( exp `  (
 2  /  E )
 )   &    |-  ( ph  ->  Y  e.  ( X (,)  +oo ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ y  e.  (
 i ... j ) ( ( R `  y
 )  /  ( y  x.  ( y  +  1 ) ) ) ) 
 <_  A )   &    |-  C  =  ( A  +  2 )   &    |-  ( ph  ->  K  e.  ( ( exp `  ( C  /  E ) ) [,)  +oo ) )   &    |-  ( ph  ->  -.  E. y  e.  NN  ( ( Y  <  y  /\  y  <_  ( K  x.  Y ) )  /\  ( abs `  ( ( R `  y )  /  y
 ) )  <_  E ) )   =>    |- 
 -.  ph
 
Theorempntpbnd 21239* Lemma for pnt 21265. Establish smallness of  R at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
 c  /  e )
 ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
 ) )  /\  ( abs `  ( ( R `
  n )  /  n ) )  <_  e )
 
Theorempntibndlem1 21240 Lemma for pntibnd 21244. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   =>    |-  ( ph  ->  L  e.  ( 0 (,) 1
 ) )
 
Theorempntibndlem2a 21241* Lemma for pntibndlem2 21242. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  (
 ( R `  x )  /  x ) ) 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  K  =  ( exp `  ( B  /  ( E  /  2
 ) ) )   &    |-  C  =  ( ( 2  x.  B )  +  ( log `  2 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1
 ) )   &    |-  ( ph  ->  Z  e.  RR+ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ( ph  /\  u  e.  ( N [,] ( ( 1  +  ( L  x.  E ) )  x.  N ) ) ) 
 ->  ( u  e.  RR  /\  N  <_  u  /\  u  <_  ( ( 1  +  ( L  x.  E ) )  x.  N ) ) )
 
Theorempntibndlem2 21242* Lemma for pntibnd 21244. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  (
 ( R `  x )  /  x ) ) 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  K  =  ( exp `  ( B  /  ( E  /  2
 ) ) )   &    |-  C  =  ( ( 2  x.  B )  +  ( log `  2 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1
 ) )   &    |-  ( ph  ->  Z  e.  RR+ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  ( 1 (,)  +oo ) A. y  e.  ( x [,] ( 2  x.  x ) ) ( (ψ `  y )  -  (ψ `  x )
 )  <_  ( (
 2  x.  ( y  -  x ) )  +  ( T  x.  ( x  /  ( log `  x ) ) ) ) )   &    |-  X  =  ( ( exp `  ( T  /  ( E  / 
 4 ) ) )  +  Z )   &    |-  ( ph  ->  M  e.  (
 ( exp `  ( C  /  E ) ) [,)  +oo ) )   &    |-  ( ph  ->  Y  e.  ( X (,)  +oo ) )   &    |-  ( ph  ->  ( ( Y  <  N  /\  N  <_  ( ( M  /  2 )  x.  Y ) )  /\  ( abs `  ( ( R `  N )  /  N ) )  <_  ( E  /  2
 ) ) )   =>    |-  ( ph  ->  E. z  e.  RR+  ( ( Y  <  z  /\  ( ( 1  +  ( L  x.  E ) )  x.  z
 )  <  ( M  x.  Y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
 
Theorempntibndlem3 21243* Lemma for pntibnd 21244. Package up pntibndlem2 21242 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  (
 ( R `  x )  /  x ) ) 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  K  =  ( exp `  ( B  /  ( E  /  2
 ) ) )   &    |-  C  =  ( ( 2  x.  B )  +  ( log `  2 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1
 ) )   &    |-  ( ph  ->  Z  e.  RR+ )   &    |-  ( ph  ->  A. m  e.  ( K [,)  +oo ) A. v  e.  ( Z (,)  +oo ) E. i  e.  NN  ( ( v  < 
 i  /\  i  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  i )  /  i
 ) )  <_  ( E  /  2 ) ) )   =>    |-  ( ph  ->  E. x  e.  RR+  A. k  e.  (
 ( exp `  ( C  /  E ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
 
Theorempntibnd 21244* Lemma for pnt 21265. Establish smallness of  R on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  (
 ( exp `  ( c  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( l  x.  e ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
 ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
 
Theorempntlemd 21245 Lemma for pnt 21265. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  A is C^*,  B is c1,  L is λ,  D is c2, and  F is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   =>    |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
 
Theorempntlemc 21246* Lemma for pnt 21265. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  U is α,  E is ε, and  K is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   =>    |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1
 )  /\  1  <  K 
 /\  ( U  -  E )  e.  RR+ )
 ) )
 
Theorempntlema 21247* Lemma for pnt 21265. Closure for the constants used in the proof. The mammoth expression  W is a number large enough to satisfy all the lower bounds needed for  Z. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Y is x2,  X is x1,  C is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and  W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   =>    |-  ( ph  ->  W  e.  RR+ )
 
Theorempntlemb 21248* Lemma for pnt 21265. Unpack all the lower bounds contained in  W, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Z is x. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   =>    |-  ( ph  ->  ( Z  e.  RR+  /\  (
 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_  ( Z  /  Y ) )  /\  ( ( 4  /  ( L  x.  E ) )  <_  ( sqr `  Z )  /\  (
 ( ( log `  X )  /  ( log `  K ) )  +  2
 )  <_  ( (
 ( log `  Z )  /  ( log `  K ) )  /  4
 )  /\  ( ( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
 2 ) )  /  (; 3 2  x.  B ) ) )  x.  ( log `  Z ) ) ) ) )
 
Theorempntlemg 21249* Lemma for pnt 21265. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  M is j^* and  N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   =>    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  ( ( ( log `  Z )  /  ( log `  K ) ) 
 /  4 )  <_  ( N  -  M ) ) )
 
Theorempntlemh 21250* Lemma for pnt 21265. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   =>    |-  ( ( ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J )  /\  ( K ^ J )  <_  ( sqr `  Z )
 ) )
 
Theorempntlemn 21251* Lemma for pnt 21265. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   =>    |-  ( ( ph  /\  ( J  e.  NN  /\  J  <_  ( Z  /  Y ) ) )  -> 
 0  <_  ( (
 ( U  /  J )  -  ( abs `  (
 ( R `  ( Z  /  J ) ) 
 /  Z ) ) )  x.  ( log `  J ) ) )
 
Theorempntlemq 21252* Lemma for pntlemj 21254. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   &    |-  ( ph  ->  V  e.  RR+ )   &    |-  ( ph  ->  ( ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E ) )  x.  V )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  J  e.  ( M..^ N ) )   &    |-  I  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  V ) ) )   =>    |-  ( ph  ->  I  C_  O )
 
Theorempntlemr 21253* Lemma for pntlemj 21254. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   &    |-  ( ph  ->  V  e.  RR+ )   &    |-  ( ph  ->  ( ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E ) )  x.  V )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  J  e.  ( M..^ N ) )   &    |-  I  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  V ) ) )   =>    |-  ( ph  ->  (
 ( U  -  E )  x.  ( ( ( L  x.  E ) 
 /  8 )  x.  ( log `  Z ) ) )  <_  ( ( # `  I
 )  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
 
Theorempntlemj 21254* Lemma for pnt 21265. The induction step. Using pntibnd 21244, we find an interval in  K ^ J ... K ^ ( J  + 
1 ) which is sufficiently large and has a much smaller value,  R ( z )  / 
z  <_  E (instead of our original bound 
R ( z )  /  z  <_  U). (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   &    |-  ( ph  ->  V  e.  RR+ )   &    |-  ( ph  ->  ( ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E ) )  x.  V )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  J  e.  ( M..^ N ) )   &    |-  I  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  V ) ) )   =>    |-  ( ph  ->  (
 ( U  -  E )  x.  ( ( ( L  x.  E ) 
 /  8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `
  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
 
Theorempntlemi 21255* Lemma for pnt 21265. Eliminate some assumptions from pntlemj 21254. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   =>    |-  ( ( ph  /\  J  e.  ( M..^ N ) )  ->  ( ( U  -  E )  x.  ( ( ( L  x.  E )  / 
 8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  (
 ( R `  ( Z  /  n ) ) 
 /  Z ) ) )  x.  ( log `  n ) ) )
 
Theorempntlemf 21256* Lemma for pnt 21265. Add up the pieces in pntlemi 21255 to get an estimate slightly better than the naive lower bound  0. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   =>    |-  ( ph  ->  (
 ( U  -  E )  x.  ( ( ( L  x.  ( E ^ 2 ) ) 
 /  (; 3 2  x.  B ) )  x.  (
 ( log `  Z ) ^ 2 ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( Z  /  Y ) ) ) ( ( ( U 
 /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
 
Theorempntlemk 21257* Lemma for pnt 21265. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   =>    |-  ( ph  ->  (
 2  x.  sum_ n  e.  ( 1 ... ( |_ `  ( Z  /  Y ) ) ) ( ( U  /  n )  x.  ( log `  n ) ) )  <_  ( ( U  x.  ( ( log `  Z )  +  3 ) )  x.  ( log `  Z ) ) )
 
Theorempntlemo 21258* Lemma for pnt 21265. Combine all the estimates to establish a smaller eventual bound on  R ( Z )  /  Z. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,)  +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z ) )  x.  ( log `  z
 ) )  -  (
 ( 2  /  ( log `  z ) )  x.  sum_ i  e.  (
 1 ... ( |_ `  (
 z  /  Y )
 ) ) ( ( abs `  ( R `  ( z  /  i
 ) ) )  x.  ( log `  i
 ) ) ) ) 
 /  z )  <_  C )   =>    |-  ( ph  ->  ( abs `  ( ( R `
  Z )  /  Z ) )  <_  ( U  -  ( F  x.  ( U ^
 3 ) ) ) )
 
Theorempntleme 21259* Lemma for pnt 21265. Package up pntlemo 21258 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  (
 ( R `  z
 )  /  z )
 )  <_  U )   &    |-  ( ph  ->  A. k  e.  ( K [,)  +oo ) A. y  e.  ( X (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z ) )  x.  ( log `  z
 ) )  -  (
 ( 2  /  ( log `  z ) )  x.  sum_ i  e.  (
 1 ... ( |_ `  (
 z  /  Y )
 ) ) ( ( abs `  ( R `  ( z  /  i
 ) ) )  x.  ( log `  i
 ) ) ) ) 
 /  z )  <_  C )   =>    |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
 ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
 
Theorempntlem3 21260* Lemma for pnt 21265. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )   &    |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  (
 y [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t }   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  u  e.  T ) 
 ->  ( u  -  ( C  x.  ( u ^
 3 ) ) )  e.  T )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
 
Theorempntlemp 21261* Lemma for pnt 21265. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  e ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
 ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   =>    |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
 ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
 
Theorempntleml 21262* Lemma for pnt 21265. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  e ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
 ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
 
Theorempnt3 21263 The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to  x. (Contributed by Mario Carneiro, 1-Jun-2016.)
 |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1
 
Theorempnt2 21264 The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to  x. (Contributed by Mario Carneiro, 1-Jun-2016.)
 |-  ( x  e.  RR+  |->  ( ( theta `  x )  /  x ) )  ~~> r  1
 
Theorempnt 21265 The Prime Number Theorem: the number of prime numbers less than  x tends asymptotically to  x  /  log (
x ) as  x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)
 |-  ( x  e.  (
 1 (,)  +oo )  |->  ( (π `  x )  /  ( x  /  ( log `  x ) ) ) )  ~~> r  1
 
13.4.13  Ostrowski's theorem
 
Theoremabvcxp 21266* Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  A  =  (AbsVal `  R )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^ c  S ) )   =>    |-  ( ( F  e.  A  /\  S  e.  (
 0 (,] 1 ) ) 
 ->  G  e.  A )
 
Theorempadicfval 21267* Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   =>    |-  ( P  e.  Prime  ->  ( J `  P )  =  ( x  e. 
 QQ  |->  if ( x  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  x ) ) ) ) )
 
Theorempadicval 21268* Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   =>    |-  ( ( P  e.  Prime  /\  X  e.  QQ )  ->  ( ( J `
  P ) `  X )  =  if ( X  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  X ) ) ) )
 
Theoremostth2lem1 21269* Lemma for ostth2 21288, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 21288. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 
n  e.  o ( A ^ n ) for any 
1  <  A. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  (
 ( ph  /\  n  e. 
 NN )  ->  ( A ^ n )  <_  ( n  x.  B ) )   =>    |-  ( ph  ->  A  <_  1 )
 
Theoremqrngbas 21270 The base set of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  Q  =  (flds  QQ )   =>    |- 
 QQ  =  ( Base `  Q )
 
Theoremqdrng 21271 The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  Q  =  (flds  QQ )   =>    |-  Q  e.  DivRing
 
Theoremqrng0 21272 The zero element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  Q  =  (flds  QQ )   =>    |-  0  =  ( 0g
 `  Q )
 
Theoremqrng1 21273 The unit element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  Q  =  (flds  QQ )   =>    |-  1  =  ( 1r
 `  Q )
 
Theoremqrngneg 21274 The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  Q  =  (flds  QQ )   =>    |-  ( X  e.  QQ  ->  ( ( inv g `  Q ) `  X )  =  -u X )
 
Theoremqrngdiv 21275 The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  Q  =  (flds  QQ )   =>    |-  ( ( X  e.  QQ  /\  Y  e.  QQ  /\  Y  =/=  0 ) 
 ->  ( X (/r `  Q ) Y )  =  ( X  /  Y ) )
 
Theoremqabvle 21276 By using induction on  N, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   =>    |-  ( ( F  e.  A  /\  N  e.  NN0 )  ->  ( F `  N )  <_  N )
 
Theoremqabvexp 21277 Induct the product rule abvmul 15876 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   =>    |-  ( ( F  e.  A  /\  M  e.  QQ  /\  N  e.  NN0 )  ->  ( F `  ( M ^ N ) )  =  ( ( F `
  M ) ^ N ) )
 
Theoremostthlem1 21278* Lemma for ostth 21290. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ( ph  /\  n  e.  ( ZZ>= `  2 )
 )  ->  ( F `  n )  =  ( G `  n ) )   =>    |-  ( ph  ->  F  =  G )
 
Theoremostthlem2 21279* Lemma for ostth 21290. Refine ostthlem1 21278 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ( ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( G `  p ) )   =>    |-  ( ph  ->  F  =  G )
 
Theoremqabsabv 21280 The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   =>    |-  ( abs  |`  QQ )  e.  A
 
Theorempadicabv 21281* The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P  pCnt  x ) ) ) )   =>    |-  ( ( P  e.  Prime  /\  N  e.  (
 0 (,) 1 ) ) 
 ->  F  e.  A )
 
Theorempadicabvf 21282* The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   =>    |-  J : Prime --> A
 
Theorempadicabvcxp 21283* All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   =>    |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( y  e. 
 QQ  |->  ( ( ( J `  P ) `
  y )  ^ c  R ) )  e.  A )
 
Theoremostth1 21284* - Lemma for ostth 21290: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If  F is equal to  1 on the primes, then by complete induction and the multiplicative property abvmul 15876 of the absolute value,  F is equal to  1 on all the integers, and ostthlem1 21278 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
  n ) )   &    |-  ( ph  ->  A. n  e. 
 Prime  -.  ( F `  n )  <  1 )   =>    |-  ( ph  ->  F  =  K )
 
Theoremostth2lem2 21285* Lemma for ostth2 21288. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  2 ) )   &    |-  ( ph  ->  1  <  ( F `  N ) )   &    |-  R  =  ( ( log `  ( F `  N ) ) 
 /  ( log `  N ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  S  =  ( ( log `  ( F `  M ) ) 
 /  ( log `  M ) )   &    |-  T  =  if ( ( F `  M )  <_  1 ,  1 ,  ( F `
  M ) )   =>    |-  ( ( ph  /\  X  e.  NN0  /\  Y  e.  ( 0 ... (
 ( M ^ X )  -  1 ) ) )  ->  ( F `  Y )  <_  (
 ( M  x.  X )  x.  ( T ^ X ) ) )
 
Theoremostth2lem3 21286* Lemma for ostth2 21288. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  2 ) )   &    |-  ( ph  ->  1  <  ( F `  N ) )   &    |-  R  =  ( ( log `  ( F `  N ) ) 
 /  ( log `  N ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  S  =  ( ( log `  ( F `  M ) ) 
 /  ( log `  M ) )   &    |-  T  =  if ( ( F `  M )  <_  1 ,  1 ,  ( F `
  M ) )   &    |-  U  =  ( ( log `  N )  /  ( log `  M )
 )   =>    |-  ( ( ph  /\  X  e.  NN )  ->  (
 ( ( F `  N )  /  ( T  ^ c  U ) ) ^ X ) 
 <_  ( X  x.  (
 ( M  x.  T )  x.  ( U  +  1 ) ) ) )
 
Theoremostth2lem4 21287* Lemma for ostth2 21288. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  2 ) )   &    |-  ( ph  ->  1  <  ( F `  N ) )   &    |-  R  =  ( ( log `  ( F `  N ) ) 
 /  ( log `  N ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  S  =  ( ( log `  ( F `  M ) ) 
 /  ( log `  M ) )   &    |-  T  =  if ( ( F `  M )  <_  1 ,  1 ,  ( F `
  M ) )   &    |-  U  =  ( ( log `  N )  /  ( log `  M )
 )   =>    |-  ( ph  ->  (
 1  <  ( F `  M )  /\  R  <_  S ) )
 
Theoremostth2 21288* - Lemma for ostth 21290: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  2 ) )   &    |-  ( ph  ->  1  <  ( F `  N ) )   &    |-  R  =  ( ( log `  ( F `  N ) ) 
 /  ( log `  N ) )   =>    |-  ( ph  ->  E. a  e.  ( 0 (,] 1
 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y
 )  ^ c  a ) ) )
 
Theoremostth3 21289* - Lemma for ostth 21290: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
  n ) )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  ( F `  P )  <  1 )   &    |-  R  =  -u ( ( log `  ( F `  P ) )  /  ( log `  P ) )   &    |-  S  =  if (
 ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )   =>    |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
 )  ^ c  a ) ) )
 
Theoremostth 21290* Ostrowski's theorem, which classifies all absolute values on  QQ. Any such absolute value must either be the trivial absolute value  K, a constant exponent  0  <  a  <_  1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
 |-  Q  =  (flds  QQ )   &    |-  A  =  (AbsVal `  Q )   &    |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 , 
 0 ,  ( q ^ -u ( q  pCnt  x ) ) ) ) )   &    |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )   =>    |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e. 
 QQ  |->  ( ( abs `  y )  ^ c  a ) )  \/ 
 E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
  y )  ^ c  a ) ) ) )
 
PART 14  GRAPH THEORY



To give an overview of the definitions and terms used in the context of graph theory, a glossary is provided in the following, mainly according to Definitions in [Bollobas] p. 1-8. Although this glossary concentrates on undirected graphs, many of the concepts are also useful for directed graphs.

Basic kinds of graphs:

TermReferenceDefinitionRemarks
(Undirected) Hypergraph df-uhgra 21292 an ordered pair  <. V ,  E >. of a set  V and a function  E into the powerset of  V ( ran  E  C_  ( ~P V )).
An element of  V is called "vertex", an element of  ran  E is called "edge", the function  E is called the "edge-function" .
In this most general definition of a graph, an "edge" may connect three or more vertices with each other, compare with the definition in Section I.1 in [Bollobas] p. 7.
Undirected multigraph df-umgra 21305 a graph  <. V ,  E >. such that  E is a function into the set of (proper or not proper) unordered pairs of  V.A proper unordered pair contains two different elements, a not proper unordered pair contains two times the same element, so it is a singleton (see preqsn 3944).
According to the definition in Section I.1 in [Bollobas] p. 7, "In a multigraph both multiple edges [joining two vertices] and multiple loops [joining a vertex to itself] are allowed".
Undirected simple graph with loops df-uslgra 21323 a graph  <. V ,  E >. such that  E is a one-to-one function into the set of (proper or not proper) unordered pairs of  V.This means that there is at most one edge between two vertices, and at most one loop from a vertex to itself.
Undirected simple graph without loops (in short "simple graph") df-usgra 21324 a graph  <. V ,  E >. such that  E is a one-to-one function into the set of (proper) unordered pairs of  V.An ordered pair  <. V ,  E >. of two distinct sets  V and  E (the "usual" definition of a "graph", see, for example, the definition in Section I.1 in [Bollobas] p. 1) can be identified with an undirected simple graph without loops by "indexing" the edges with themselves, see ausisusgra 21337.
Finite graph---a graph  <. V ,  E >. with finite sets  V and  E.In simple graphs,  E is finite if  V is finite, see usgrafis 21386. The number of edges is limited by  ( n  _C  2 ) (or " n choose 2") with  n  =  ( # `  V ), see usgramaxsize 21453. Analogously, the number of edges of an undirected simple graph with loops is limited by  ( ( n  +  1 )  _C  2 ). In multigraphs, however,  E can be infinite although  V is finite.
Graph of finite size---a graph  <. V ,  E >. with finite set  E, i.e. with a finite number of edges.A graph can be of finite size although  V is infinite.


Terms and properties of graphs:
TermReferenceDefinitionRemarks
Edge joining (two) vertices --- An edge  e  e.  ran  E "joins" the vertices v1, v2, ... vn ( n  e.  NN) if  e = { v1, v2, ... vn }. If  n  =  1,  e = { v1 } is a "loop", if  n  =  2,  e = { v1 , v2 } is an egde as it is usually defined, see definition in Section I.1 in [Bollobas] p. 1.
(Two) Endvertices of an edge see definition in Section I.1 in [Bollobas] p. 1. If an edge  e  e.  ran  E joins the vertices v1, v2, ... vn ( n  e.  NN), then the vertices v1, v2, ... vn are called the "endvertices" of the edge  e.
(Two) Adjacent vertices see definition in Section I.1 in [Bollobas] p. 1/2. The vertices v1, v2, ... vn ( n  e.  NN) are "adjacent" if there is an edge e = { v1, v2, ... vn } joining these vertices. In this case, the vertices are "incident" with the edge e (see definition in Section I.1 in [Bollobas] p. 2) or "connected" by the edge e.
(Two) Adjacent edges The edges e0, e1, ... en ( n  e.  NN) are "adjacent" if they have exactly one common endvertex. Generalization of definition in Section I.1 in [Bollobas] p. 2.
Order of a graph see definition in Section I.1 in [Bollobas] p. 3 the "order" of a graph  <. V ,  E >. is the number of vertices in the graph ( ( # `  V )).
Size of a graph see definition in Section I.1 in [Bollobas] p. 3 the "size" of a graph  <. V ,  E >. is the number of edges in the graph ( ( # `  E )).
Neighborhood of a vertex df-nbgra 21390 resp. definition in Section I.1 in [Bollobas] p. 3 A vertex connected with a vertex  v by an edge is called a "neighbor" of the vertex  v. The set of neighbors of a vertex  v is called the "neighborhood" (or "open neighborhood") of the vertex  v. The "closed neighborhood" is the union of the (open) neighborhood of the vertex  v with  { v }.
Degree of a vertex df-vdgr 21622 The "degree" of a vertex is the number of the edges having this vertex as endvertex. In a simple graph, the degree of a vertex is the number of neighbors of this vertex, see definition in Section I.1 in [Bollobas] p. 3
Isolated vertex usgravd0nedg 21640 A vertex is called "isolated" if it is not an endvertex of any edge, thus having degree 0.
Universal vertex df-uvtx 21392 A vertex is called "universal" if it is connected with every other vertex of the graph by an edge, thus having degree  ( # `  V ).


Special kinds of graphs:
TermReferenceDefinitionRemarks
Complete graph df-cusgra 21391 A graph is called "complete" if each pair of vertices is connected by an edge. The size of a complete undirected simple graph of order  n is  ( n  _C  2 ) (or " n choose 2"), see cusgrasize 21444.
Empty graph umgra0 21317 and usgra0 21347 A graph is called "empty" if it has no edges.
Null graph usgra0v 21348 A graph is called the "null graph" if it has no vertices (and therefore also no edges).
Trivial graph usgra1v 21366 A graph is called the "trivial graph" if it has only one vertex and no edges.
Connected graph df-conngra 21614 resp. definition in Section I.1 in [Bollobas] p. 6 A graph is called "connected" if for each pair of vertices there is a path between these vertices.


For the terms "Path", "Walk", "Trail", "Circuit", "Cycle" see the remarks below and the definitions in Section I.1 in [Bollobas] p. 4-5.
 
14.1  Undirected graphs - basics
 
14.1.1  Undirected hypergraphs
 
Syntaxcuhg 21291 Extend class notation with undirected hypergraphs.
 class UHGrph
 
Definitiondf-uhgra 21292* Define the class of all undirected hypergraphs. An undirected hypergraph is a pair of a set and a function into the powerset of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |- UHGrph  =  { <. v ,  e >.  |  e : dom  e
 --> ( ~P v  \  { (/) } ) }
 
Theoremreluhgra 21293 The class of all undirected hypergraphs is a relation. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |- 
 Rel UHGrph
 
Theoremuhgrav 21294 The classes of vertices and edges of an undirected hypergraph are sets. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |-  ( V UHGrph  E  ->  ( V  e.  _V  /\  E  e.  _V )
 )
 
Theoremisuhgra 21295 The property of being an undirected hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V UHGrph  E  <->  E : dom  E --> ( ~P V  \  { (/) } )
 ) )
 
Theoremuhgraf 21296 The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |-  ( V UHGrph  E  ->  E : dom  E --> ( ~P V  \  { (/) } )
 )
 
Theoremuhgrafun 21297 The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |-  ( V UHGrph  E  ->  Fun 
 E )
 
Theoremuhgrass 21298 An edge is a subset of vertices, analogous to umgrass 21311. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |-  ( ( V UHGrph  E  /\  F  e.  dom  E )  ->  ( E `  F )  C_  V )
 
Theoremuhgraeq12d 21299 Equality of hypergraphs. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
 |-  ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( V  =  W  /\  E  =  F )
 )  ->  ( V UHGrph  E  <->  W UHGrph  F ) )
 
Theoremuhgrares 21300 A subgraph of a hypergraph (formed by removing some edges from the original graph) is a hypergraph, analogous to umgrares 21316. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
 |-  ( V UHGrph  E  ->  V UHGrph 
 ( E  |`  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173