HomeHome Metamath Proof Explorer
Theorem List (p. 239 of 322)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21498)
  Hilbert Space Explorer  Hilbert Space Explorer
(21499-23021)
  Users' Mathboxes  Users' Mathboxes
(23022-32154)
 

Theorem List for Metamath Proof Explorer - 23801-23900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcvmsdisj 23801* An even covering of  U is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ( T  e.  ( S `  U ) 
 /\  A  e.  T  /\  B  e.  T ) 
 ->  ( A  =  B  \/  ( A  i^i  B )  =  (/) ) )
 
Theoremcvmshmeo 23802* Every element of an even covering of  U is homeomorphic to  U via  F. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ( T  e.  ( S `  U ) 
 /\  A  e.  T )  ->  ( F  |`  A )  e.  ( ( Ct  A )  Homeo  ( Jt  U ) ) )
 
Theoremcvmsf1o 23803*  F, localized to an element of an even covering of  U, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U )  /\  A  e.  T )  ->  ( F  |`  A ) : A -1-1-onto-> U )
 
Theoremcvmscld 23804* The sets of an even covering are clopen in the subspace topology on  T. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U )  /\  A  e.  T )  ->  A  e.  ( Clsd `  ( Ct  ( `' F " U ) ) ) )
 
Theoremcvmsss2 23805* An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  ( ( S `  U )  =/=  (/)  ->  ( S `  V )  =/=  (/) ) )
 
Theoremcvmcov2 23806* The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `  x )  =/=  (/) ) )
 
Theoremcvmseu 23807* Every element in  U. T is a member of a unique element of  T. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   =>    |-  (
 ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `
  A )  e.  U ) )  ->  E! x  e.  T  A  e.  x )
 
Theoremcvmsiota 23808* Identify the unique element of  T containing  A. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  W  =  ( iota_ x  e.  T A  e.  x )   =>    |-  (
 ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `
  A )  e.  U ) )  ->  ( W  e.  T  /\  A  e.  W ) )
 
Theoremcvmopnlem 23809* Lemma for cvmopn 23811. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   =>    |-  (
 ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( F " A )  e.  J )
 
Theoremcvmfolem 23810* Lemma for cvmfo 23831. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   =>    |-  ( F  e.  ( C CovMap  J )  ->  F : B -onto-> X )
 
Theoremcvmopn 23811 A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  (
 ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( F " A )  e.  J )
 
Theoremcvmliftmolem1 23812* Lemma for cvmliftmo 23815. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e.  Con )   &    |-  ( ph  ->  K  e. 𝑛Locally  Con )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  M  e.  ( K  Cn  C ) )   &    |-  ( ph  ->  N  e.  ( K  Cn  C ) )   &    |-  ( ph  ->  ( F  o.  M )  =  ( F  o.  N ) )   &    |-  ( ph  ->  ( M `  O )  =  ( N `  O ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  ( ( ph  /\  ps )  ->  T  e.  ( S `  U ) )   &    |-  ( ( ph  /\  ps )  ->  W  e.  T )   &    |-  ( ( ph  /\  ps )  ->  I  C_  ( `' M " W ) )   &    |-  ( ( ph  /\ 
 ps )  ->  ( Kt  I )  e.  Con )   &    |-  ( ( ph  /\  ps )  ->  X  e.  I
 )   &    |-  ( ( ph  /\  ps )  ->  Q  e.  I
 )   &    |-  ( ( ph  /\  ps )  ->  R  e.  I
 )   &    |-  ( ( ph  /\  ps )  ->  ( F `  ( M `  X ) )  e.  U )   =>    |-  ( ( ph  /\  ps )  ->  ( Q  e.  dom  ( M  i^i  N )  ->  R  e.  dom  ( M  i^i  N ) ) )
 
Theoremcvmliftmolem2 23813* Lemma for cvmliftmo 23815. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e.  Con )   &    |-  ( ph  ->  K  e. 𝑛Locally  Con )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  M  e.  ( K  Cn  C ) )   &    |-  ( ph  ->  N  e.  ( K  Cn  C ) )   &    |-  ( ph  ->  ( F  o.  M )  =  ( F  o.  N ) )   &    |-  ( ph  ->  ( M `  O )  =  ( N `  O ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ph  ->  M  =  N )
 
Theoremcvmliftmoi 23814 A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e.  Con )   &    |-  ( ph  ->  K  e. 𝑛Locally  Con )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  M  e.  ( K  Cn  C ) )   &    |-  ( ph  ->  N  e.  ( K  Cn  C ) )   &    |-  ( ph  ->  ( F  o.  M )  =  ( F  o.  N ) )   &    |-  ( ph  ->  ( M `  O )  =  ( N `  O ) )   =>    |-  ( ph  ->  M  =  N )
 
Theoremcvmliftmo 23815* A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e.  Con )   &    |-  ( ph  ->  K  e. 𝑛Locally  Con )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   =>    |-  ( ph  ->  E* f  e.  ( K  Cn  C ) ( ( F  o.  f
 )  =  G  /\  ( f `  O )  =  P )
 )
 
Theoremcvmliftlem1 23816* Lemma for cvmlift 23830. In cvmliftlem15 23829, we picked an  N large enough so that the sections  ( G " [ ( k  -  1 )  /  N ,  k  /  N ] ) are all contained in an even covering, and the function  T enumerates these even coverings. So  1st `  ( T `  M
) is a neighborhood of  ( G " [
( M  -  1 )  /  N ,  M  /  N ] ), and  2nd `  ( T `  M ) is an even covering of  1st `  ( T `  M ), which is to say a disjoint union of open sets in  C whose image is  1st `  ( T `
 M ). (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  ( ( ph  /\ 
 ps )  ->  M  e.  ( 1 ... N ) )   =>    |-  ( ( ph  /\  ps )  ->  ( 2nd `  ( T `  M ) )  e.  ( S `  ( 1st `  ( T `  M ) ) ) )
 
Theoremcvmliftlem2 23817* Lemma for cvmlift 23830. 
W  =  [ ( k  -  1 )  /  N ,  k  /  N ] is a subset of  [ 0 ,  1 ] for each  M  e.  ( 1 ... N
). (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  ( ( ph  /\ 
 ps )  ->  M  e.  ( 1 ... N ) )   &    |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  W  C_  ( 0 [,] 1
 ) )
 
Theoremcvmliftlem3 23818* Lemma for cvmlift 23830. Since  1st `  ( T `  M
) is a neighborhood of  ( G " W ), every element  A  e.  W satisfies  ( G `  A )  e.  ( 1st `  ( T `
 M ) ). (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  ( ( ph  /\ 
 ps )  ->  M  e.  ( 1 ... N ) )   &    |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )   &    |-  (
 ( ph  /\  ps )  ->  A  e.  W )   =>    |-  ( ( ph  /\  ps )  ->  ( G `  A )  e.  ( 1st `  ( T `  M ) ) )
 
Theoremcvmliftlem4 23819* Lemma for cvmlift 23830. The function  Q will be our lifted path, defined piecewise on each section  [ ( M  -  1 )  /  N ,  M  /  N ] for  M  e.  ( 1 ... N ). For 
M  =  0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping  0 to  P. (Contributed by Mario Carneiro, 15-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   =>    |-  ( Q `  0 )  =  { <. 0 ,  P >. }
 
Theoremcvmliftlem5 23820* Lemma for cvmlift 23830. Definition of  Q at a successor. This is a function defined on  W as  `' ( T  |`  I )  o.  G where  I is the unique covering set of  2nd `  ( T `  M ) that contains  Q ( M  -  1 ) evaluated at the last defined point, namely  ( M  - 
1 )  /  N (note that for  M  =  1 this is using the seed value  Q ( 0 ) ( 0 )  =  P). (Contributed by Mario Carneiro, 15-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )   =>    |-  ( ( ph  /\  M  e.  NN )  ->  ( Q `  M )  =  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M ) ) ( ( Q `  ( M  -  1
 ) ) `  (
 ( M  -  1
 )  /  N )
 )  e.  b ) ) `  ( G `
  z ) ) ) )
 
Theoremcvmliftlem6 23821* Lemma for cvmlift 23830. Induction step for cvmliftlem7 23822. Assuming that  Q ( M  - 
1 ) is defined at  ( M  -  1 )  /  N and is a preimage of  G ( ( M  -  1 )  /  N ), the next segment  Q ( M ) is also defined and is a function on  W which is a lift  G for this segment. This follows explicitly from the definition  Q ( M )  =  `' ( F  |`  I )  o.  G since  G is in  1st `  ( F `  M ) for the entire interval so that  `' ( F  |`  I ) maps this into  I and  F  o.  Q maps back to  G. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )   &    |-  ( ( ph  /\  ps )  ->  M  e.  (
 1 ... N ) )   &    |-  ( ( ph  /\  ps )  ->  ( ( Q `
  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) }
 ) )   =>    |-  ( ( ph  /\  ps )  ->  ( ( Q `
  M ) : W --> B  /\  ( F  o.  ( Q `  M ) )  =  ( G  |`  W ) ) )
 
Theoremcvmliftlem7 23822* Lemma for cvmlift 23830. Prove by induction that every  Q function is well-defined (we can immediately follow this theorem with cvmliftlem6 23821 to show functionality and lifting of  Q). (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )   =>    |-  ( ( ph  /\  M  e.  ( 1 ... N ) )  ->  ( ( Q `  ( M  -  1 ) ) `
  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) } ) )
 
Theoremcvmliftlem8 23823* Lemma for cvmlift 23830. The functions  Q are continuous functions because they are defined as  `' ( F  |`  I )  o.  G where  G is continuous and  ( F  |`  I ) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )   =>    |-  ( ( ph  /\  M  e.  ( 1 ... N ) )  ->  ( Q `
  M )  e.  ( ( Lt  W )  Cn  C ) )
 
Theoremcvmliftlem9 23824* Lemma for cvmlift 23830. The  Q ( M ) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the  Q functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   =>    |-  ( ( ph  /\  M  e.  ( 1
 ... N ) ) 
 ->  ( ( Q `  M ) `  (
 ( M  -  1
 )  /  N )
 )  =  ( ( Q `  ( M  -  1 ) ) `
  ( ( M  -  1 )  /  N ) ) )
 
Theoremcvmliftlem10 23825* Lemma for cvmlift 23830. The function  K is going to be our complete lifted path, formed by unioning together all the  Q functions (each of which is defined on one segment  [ ( M  -  1 )  /  N ,  M  /  N ] of the interval). Here we prove by induction that  K is a continuous function and a lift of  G by applying cvmliftlem6 23821, cvmliftlem7 23822 (to show it is a function and a lift), cvmliftlem8 23823 (to show it is continuous), and cvmliftlem9 23824 (to show that different 
Q functions agree on the intersection of their domains, so that the pasting lemma paste 17022 gives that  K is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  K  =  U_ k  e.  (
 1 ... N ) ( Q `  k )   &    |-  ( ch  <->  ( ( n  e.  NN  /\  ( n  +  1 )  e.  ( 1 ... N ) )  /\  ( U_ k  e.  ( 1 ... n ) ( Q `
  k )  e.  ( ( Lt  ( 0 [,] ( n  /  N ) ) )  Cn  C )  /\  ( F  o.  U_ k  e.  ( 1 ... n ) ( Q `  k ) )  =  ( G  |`  ( 0 [,] ( n  /  N ) ) ) ) ) )   =>    |-  ( ph  ->  ( K  e.  ( ( Lt  ( 0 [,] ( N  /  N ) ) )  Cn  C ) 
 /\  ( F  o.  K )  =  ( G  |`  ( 0 [,] ( N  /  N ) ) ) ) )
 
Theoremcvmliftlem11 23826* Lemma for cvmlift 23830. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  K  =  U_ k  e.  (
 1 ... N ) ( Q `  k )   =>    |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
 
Theoremcvmliftlem13 23827* Lemma for cvmlift 23830. The initial value of  K is  P because  Q ( 1 ) is a subset of  K which takes value  P at  0. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  K  =  U_ k  e.  (
 1 ... N ) ( Q `  k )   =>    |-  ( ph  ->  ( K `  0 )  =  P )
 
Theoremcvmliftlem14 23828* Lemma for cvmlift 23830. Putting the results of cvmliftlem11 23826, cvmliftlem13 23827 and cvmliftmo 23815 together, we have that  K is a continuous function, satisfies  F  o.  K  =  G and  K ( 0 )  =  P, and is equal to any other function which also has these properties, so it follows that  K is the unique lift of  G. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T : ( 1 ... N ) -->
 U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )   &    |-  ( ph  ->  A. k  e.  ( 1
 ... N ) ( G " ( ( ( k  -  1
 )  /  N ) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k ) ) )   &    |-  L  =  ( topGen `  ran  (,) )   &    |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N ) ) 
 |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m ) ) ( x `  ( ( m  -  1 ) 
 /  N ) )  e.  b ) ) `
  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
 >. } ) )   &    |-  K  =  U_ k  e.  (
 1 ... N ) ( Q `  k )   =>    |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `
  0 )  =  P ) )
 
Theoremcvmliftlem15 23829* Lemma for cvmlift 23830. Discharge the assumptions of cvmliftlem14 23828. The set of all open subsets 
u of the unit interval such that  G " u is contained in an even covering of some open set in  J is a cover of  II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 18464, there is a subdivision of the unit interval into  N equal parts such that each part is entirely contained within one such open set of  J. Then using finite choice ac6sfi 7101 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 23828. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. u  e.  s  ( A. v  e.  (
 s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  B  =  U. C   &    |-  X  =  U. J   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   =>    |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
 f `  0 )  =  P ) )
 
Theoremcvmlift 23830* One of the important properties of covering maps is that any path  G in the base space "lifts" to a path  f in the covering space such that  F  o.  f  =  G, and given a starting point  P in the covering space this lift is unique. The proof is contained in cvmliftlem1 23816 thru cvmliftlem15 23829. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  B  =  U. C   =>    |-  ( ( ( F  e.  ( C CovMap  J )  /\  G  e.  ( II  Cn  J ) ) 
 /\  ( P  e.  B  /\  ( F `  P )  =  ( G `  0 ) ) )  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `
  0 )  =  P ) )
 
Theoremcvmfo 23831 A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  B  =  U. C   &    |-  X  =  U. J   =>    |-  ( F  e.  ( C CovMap  J )  ->  F : B -onto-> X )
 
Theoremcvmliftiota 23832* Write out a function  H that is the unique lift of  F. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  B  =  U. C   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  G  /\  ( f `  0
 )  =  P ) )   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0
 ) )   =>    |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  G  /\  ( H `
  0 )  =  P ) )
 
Theoremcvmlift2lem1 23833* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  ( A. y  e.  (
 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `  { y } )
 ( ( u  X.  { x } )  C_  M 
 <->  ( u  X.  {
 t } )  C_  M )  ->  ( ( ( 0 [,] 1
 )  X.  { x } )  C_  M  ->  ( ( 0 [,] 1
 )  X.  { t } )  C_  M ) )
 
Theoremcvmlift2lem9a 23834* Lemma for cvmlift2 23847 and cvmlift3 23859. (Contributed by Mario Carneiro, 9-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  H : Y --> B )   &    |-  ( ph  ->  ( F  o.  H )  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  X  e.  Y )   &    |-  ( ph  ->  T  e.  ( S `  A ) )   &    |-  ( ph  ->  ( W  e.  T  /\  ( H `
  X )  e.  W ) )   &    |-  ( ph  ->  M  C_  Y )   &    |-  ( ph  ->  ( H " M )  C_  W )   =>    |-  ( ph  ->  ( H  |`  M )  e.  ( ( Kt  M )  Cn  C ) )
 
Theoremcvmlift2lem2 23835* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   =>    |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  ( z  e.  (
 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( H `
  0 )  =  P ) )
 
Theoremcvmlift2lem3 23836* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) ) 
 /\  ( f `  0 )  =  ( H `  X ) ) )   =>    |-  ( ( ph  /\  X  e.  ( 0 [,] 1
 ) )  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  ( z  e.  (
 0 [,] 1 )  |->  ( X G z ) )  /\  ( K `
  0 )  =  ( H `  X ) ) )
 
Theoremcvmlift2lem4 23837* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   =>    |-  ( ( X  e.  ( 0 [,] 1
 )  /\  Y  e.  ( 0 [,] 1
 ) )  ->  ( X K Y )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  (
 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
  0 )  =  ( H `  X ) ) ) `  Y ) )
 
Theoremcvmlift2lem5 23838* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   =>    |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
 ) ) --> B )
 
Theoremcvmlift2lem6 23839* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   =>    |-  ( ( ph  /\  X  e.  ( 0 [,] 1
 ) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
 0 [,] 1 ) ) )  Cn  C ) )
 
Theoremcvmlift2lem7 23840* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   =>    |-  ( ph  ->  ( F  o.  K )  =  G )
 
Theoremcvmlift2lem8 23841* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 9-Mar-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   =>    |-  ( ( ph  /\  X  e.  ( 0 [,] 1
 ) )  ->  ( X K 0 )  =  ( H `  X ) )
 
Theoremcvmlift2lem9 23842* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  ( ph  ->  ( X G Y )  e.  M )   &    |-  ( ph  ->  T  e.  ( S `  M ) )   &    |-  ( ph  ->  U  e.  II )   &    |-  ( ph  ->  V  e.  II )   &    |-  ( ph  ->  ( IIt  U )  e.  Con )   &    |-  ( ph  ->  ( IIt  V )  e.  Con )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  ( U  X.  V ) 
 C_  ( `' G " M ) )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z }
 ) )  Cn  C ) )   &    |-  W  =  (
 iota_ b  e.  T ( X K Y )  e.  b )   =>    |-  ( ph  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
 
Theoremcvmlift2lem10 23843* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  ( ph  ->  X  e.  ( 0 [,] 1
 ) )   &    |-  ( ph  ->  Y  e.  ( 0 [,] 1 ) )   =>    |-  ( ph  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w }
 ) )  e.  (
 ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v
 ) )  e.  (
 ( ( II  tX  II )t  ( u  X.  v
 ) )  Cn  C ) ) ) )
 
Theoremcvmlift2lem11 23844* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   &    |-  M  =  {
 z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  z ) }   &    |-  ( ph  ->  U  e.  II )   &    |-  ( ph  ->  V  e.  II )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  ( E. w  e.  V  ( K  |`  ( U  X.  { w }
 ) )  e.  (
 ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( U  X.  V ) )  e.  (
 ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) ) )   =>    |-  ( ph  ->  (
 ( U  X.  { Y } )  C_  M  ->  ( U  X.  { Z } )  C_  M ) )
 
Theoremcvmlift2lem12 23845* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   &    |-  M  =  {
 z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  z ) }   &    |-  A  =  { a  e.  (
 0 [,] 1 )  |  ( ( 0 [,] 1 )  X.  {
 a } )  C_  M }   &    |-  S  =  { <. r ,  t >.  |  ( t  e.  (
 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `  { r } )
 ( ( u  X.  { a } )  C_  M 
 <->  ( u  X.  {
 t } )  C_  M ) ) }   =>    |-  ( ph  ->  K  e.  (
 ( II  tX  II )  Cn  C ) )
 
Theoremcvmlift2lem13 23846* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   &    |-  H  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) 
 /\  ( f `  0 )  =  P ) )   &    |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) 
 /\  ( f `  0 )  =  ( H `  x ) ) ) `  y ) )   =>    |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
 0 g 0 )  =  P ) )
 
Theoremcvmlift2 23847* A two-dimensional version of cvmlift 23830. There is a unique lift of functions on the unit square 
II  tX  II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
 |-  B  =  U. C   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  (
 0 G 0 ) )   =>    |-  ( ph  ->  E! f  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  f )  =  G  /\  (
 0 f 0 )  =  P ) )
 
Theoremcvmliftphtlem 23848* Lemma for cvmliftpht 23849. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  M  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  G  /\  ( f `  0
 )  =  P ) )   &    |-  N  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  H  /\  ( f `  0
 )  =  P ) )   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0 ) )   &    |-  ( ph  ->  G  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  H  e.  ( II  Cn  J ) )   &    |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )   &    |-  ( ph  ->  A  e.  (
 ( II  tX  II )  Cn  C ) )   &    |-  ( ph  ->  ( F  o.  A )  =  K )   &    |-  ( ph  ->  (
 0 A 0 )  =  P )   =>    |-  ( ph  ->  A  e.  ( M (
 PHtpy `  C ) N ) )
 
Theoremcvmliftpht 23849* If  G and  H are path-homotopic, then their lifts  M and  N are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  M  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  G  /\  ( f `  0
 )  =  P ) )   &    |-  N  =  (
 iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f
 )  =  H  /\  ( f `  0
 )  =  P ) )   &    |-  ( ph  ->  F  e.  ( C CovMap  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  0 ) )   &    |-  ( ph  ->  G (  ~=ph  `  J ) H )   =>    |-  ( ph  ->  M (  ~=ph  `  C ) N )
 
Theoremcvmlift3lem1 23850* Lemma for cvmlift3 23859. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  ( ph  ->  M  e.  ( II  Cn  K ) )   &    |-  ( ph  ->  ( M `  0 )  =  O )   &    |-  ( ph  ->  N  e.  ( II  Cn  K ) )   &    |-  ( ph  ->  ( N `  0 )  =  O )   &    |-  ( ph  ->  ( M `  1 )  =  ( N `  1 ) )   =>    |-  ( ph  ->  ( ( iota_
 g  e.  ( II 
 Cn  C ) ( ( F  o.  g
 )  =  ( G  o.  M )  /\  ( g `  0
 )  =  P ) ) `  1 )  =  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  N )  /\  ( g `
  0 )  =  P ) ) `  1 ) )
 
Theoremcvmlift3lem2 23851* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   =>    |-  ( ( ph  /\  X  e.  Y ) 
 ->  E! z  e.  B  E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) )
 
Theoremcvmlift3lem3 23852* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   =>    |-  ( ph  ->  H : Y --> B )
 
Theoremcvmlift3lem4 23853* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   =>    |-  ( ( ph  /\  X  e.  Y )  ->  (
 ( H `  X )  =  A  <->  E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  A ) ) )
 
Theoremcvmlift3lem5 23854* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   =>    |-  ( ph  ->  ( F  o.  H )  =  G )
 
Theoremcvmlift3lem6 23855* Lemma for cvmlift3 23859. (Contributed by Mario Carneiro, 9-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  ( ph  ->  ( G `  X )  e.  A )   &    |-  ( ph  ->  T  e.  ( S `  A ) )   &    |-  ( ph  ->  M  C_  ( `' G " A ) )   &    |-  W  =  (
 iota_ b  e.  T ( H `  X )  e.  b )   &    |-  ( ph  ->  X  e.  M )   &    |-  ( ph  ->  Z  e.  M )   &    |-  ( ph  ->  Q  e.  ( II  Cn  K ) )   &    |-  R  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g
 )  =  ( G  o.  Q )  /\  ( g `  0
 )  =  P ) )   &    |-  ( ph  ->  ( ( Q `  0
 )  =  O  /\  ( Q `  1 )  =  X  /\  ( R `  1 )  =  ( H `  X ) ) )   &    |-  ( ph  ->  N  e.  ( II  Cn  ( Kt  M ) ) )   &    |-  ( ph  ->  ( ( N `  0
 )  =  X  /\  ( N `  1 )  =  Z ) )   &    |-  I  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  N )  /\  ( g `  0 )  =  ( H `  X ) ) )   =>    |-  ( ph  ->  ( H `  Z )  e.  W )
 
Theoremcvmlift3lem7 23856* Lemma for cvmlift3 23859. (Contributed by Mario Carneiro, 9-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   &    |-  ( ph  ->  ( G `  X )  e.  A )   &    |-  ( ph  ->  T  e.  ( S `  A ) )   &    |-  ( ph  ->  M  C_  ( `' G " A ) )   &    |-  W  =  (
 iota_ b  e.  T ( H `  X )  e.  b )   &    |-  ( ph  ->  ( Kt  M )  e. PCon )   &    |-  ( ph  ->  V  e.  K )   &    |-  ( ph  ->  V  C_  M )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  H  e.  ( ( K  CnP  C ) `  X ) )
 
Theoremcvmlift3lem8 23857* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 6-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ph  ->  H  e.  ( K  Cn  C ) )
 
Theoremcvmlift3lem9 23858* Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   &    |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0
 )  =  O  /\  ( f `  1
 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f
 )  /\  ( g `  0 )  =  P ) ) `  1
 )  =  z ) ) )   &    |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
 k )  /\  A. c  e.  s  ( A. d  e.  (
 s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) }
 )   =>    |-  ( ph  ->  E. f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `
  O )  =  P ) )
 
Theoremcvmlift3 23859* A general version of cvmlift 23830. If  K is simply connected and weakly locally path-connected, then there is a unique lift of functions on  K which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
 |-  B  =  U. C   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( C CovMap  J )
 )   &    |-  ( ph  ->  K  e. SCon )   &    |-  ( ph  ->  K  e. 𝑛Locally PCon )   &    |-  ( ph  ->  O  e.  Y )   &    |-  ( ph  ->  G  e.  ( K  Cn  J ) )   &    |-  ( ph  ->  P  e.  B )   &    |-  ( ph  ->  ( F `  P )  =  ( G `  O ) )   =>    |-  ( ph  ->  E! f  e.  ( K  Cn  C ) ( ( F  o.  f
 )  =  G  /\  ( f `  O )  =  P )
 )
 
18.4.10  Undirected multigraphs
 
Syntaxcumg 23860 Extend class notation with undirected multigraphs.
 class UMGrph
 
Syntaxceup 23861 Extend class notation with Eulerian paths.
 class EulPaths
 
Syntaxcvdg 23862 Extend class notation with the vertex degree function.
 class VDeg
 
Definitiondf-umgra 23863* Define the class of all undirected multigraphs. A multigraph is a pair  <. V ,  E >. where  E is a function into subsets of  V of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |- UMGrph  =  { <. v ,  e >.  |  e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } }
 
Definitiondf-eupa 23864* Define the set of all Eulerian paths on an undirected multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |- EulPaths  =  ( v  e.  _V ,  e  e.  _V  |->  { <. f ,  p >.  |  ( v UMGrph  e  /\  E. n  e.  NN0  ( f : ( 1 ... n ) -1-1-onto-> dom  e  /\  p : ( 0 ... n ) --> v  /\  A. k  e.  ( 1
 ... n ) ( e `  ( f `
  k ) )  =  { ( p `
  ( k  -  1 ) ) ,  ( p `  k
 ) } ) ) } )
 
Definitiondf-vdgr 23865* Define the vertex degree function for an undirected multigraph. We have to double-count those edges that contain  u "twice" (i.e. self-loops), this being represented as a singleton as the edge's value. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |- VDeg  =  ( v  e.  _V ,  e  e.  _V  |->  ( u  e.  v  |->  ( ( # `  { x  e. 
 dom  e  |  u  e.  ( e `  x ) } )  +  ( # `
  { x  e. 
 dom  e  |  ( e `  x )  =  { u } } ) ) ) )
 
Theoremrelumgra 23866 The class of all undirected multigraphs is a relation. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  Rel UMGrph
 
Theoremisumgra 23867* The property of being an undirected multigraph. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V  e.  W  /\  E  e.  X ) 
 ->  ( V UMGrph  E  <->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
 )
 
Theoremwrdumgra 23868* The property of being an undirected multigraph. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V  e.  W  /\  E  e. Word  X )  ->  ( V UMGrph  E  <->  E  e. Word  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
 )
 
Theoremumgraf2 23869* The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( V UMGrph  E  ->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
 
Theoremumgraf 23870* The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
 
Theoremumgrass 23871 An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  ->  ( E `  F )  C_  V )
 
Theoremumgran0 23872 An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  ->  ( E `  F )  =/=  (/) )
 
Theoremumgrale 23873 An edge has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  ->  ( # `
  ( E `  F ) )  <_ 
 2 )
 
Theoremumgrafi 23874 An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  ->  ( E `  F )  e. 
 Fin )
 
Theoremumgraex 23875* An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (
 ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y }
 )
 
Theoremumgrares 23876 A subgraph of a graph (formed by removing some edges from the original graph) is a graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( V UMGrph  E  ->  V UMGrph  ( E  |`  A ) )
 
Theoremumgra0 23877 The empty graph, with vertices but no edges, is a graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( V  e.  W  ->  V UMGrph  (/) )
 
Theoremumgra1 23878 The graph with one edge. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( ( V  e.  W  /\  A  e.  X )  /\  ( B  e.  V  /\  C  e.  V ) )  ->  V UMGrph  { <. A ,  { B ,  C } >. } )
 
Theoremumgraun 23879 If  <. V ,  E >. and  <. V ,  F >. are graphs, then  <. V ,  E  u.  F >. is a graph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ph  ->  E  Fn  A )   &    |-  ( ph  ->  F  Fn  B )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  V UMGrph  E )   &    |-  ( ph  ->  V UMGrph  F )   =>    |-  ( ph  ->  V UMGrph  ( E  u.  F ) )
 
Theoremreleupa 23880 The set  ( V EulPaths  E ) of all Eulerian paths on  <. V ,  E >. is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  Rel  ( V EulPaths  E )
 
Theoremiseupa 23881* The property " <. F ,  P >. is an Eulerian path on the graph  <. V ,  E >.". An Eulerian path is defined as bijection  F from the edges to a set  1 ... N a function  P :
( 0 ... N
) --> V into the vertices such that for each 
1  <_  k  <_  N,  F ( k ) is an edge from  P ( k  -  1 ) to  P
( k ). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.)
 |-  ( dom  E  =  A  ->  ( F ( V EulPaths  E ) P  <->  ( V UMGrph  E  /\  E. n  e.  NN0  ( F : ( 1
 ... n ) -1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1
 ... n ) ( E `  ( F `
  k ) )  =  { ( P `
  ( k  -  1 ) ) ,  ( P `  k
 ) } ) ) ) )
 
Theoremeupagra 23882 If an eulerian path exists, then 
<. V ,  E >. is a graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( F ( V EulPaths  E ) P  ->  V UMGrph  E )
 
Theoremeupai 23883* Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  ( ( ( # `  F )  e.  NN0  /\  F : ( 1
 ... ( # `  F ) ) -1-1-onto-> A  /\  P :
 ( 0 ... ( # `
  F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F ) ) ( E `
  ( F `  k ) )  =  { ( P `  ( k  -  1
 ) ) ,  ( P `  k ) }
 ) )
 
Theoremeupacl 23884 An Eulerian path has length 
# ( F ), which is an integer. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( F ( V EulPaths  E ) P  ->  ( # `  F )  e.  NN0 )
 
Theoremeupaf1o 23885 The  F function in an Eulerian path is a bijection from a one-based sequence to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  F : ( 1 ... ( # `  F ) ) -1-1-onto-> A )
 
Theoremeupafi 23886 Any graph with an Eulerian path is finite. (Contributed by Mario Carneiro, 7-Apr-2015.)
 |-  (
 ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  A  e.  Fin )
 
Theoremeupapf 23887 The  P function in an Eulerian path is a function from a zero-based finite sequence to the vertices. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( F ( V EulPaths  E ) P  ->  P :
 ( 0 ... ( # `
  F ) ) --> V )
 
Theoremeupaseg 23888 The  N-th edge in an eulerian path is the edge from  P ( N  - 
1 ) to  P ( N ). (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( F ( V EulPaths  E ) P  /\  N  e.  ( 1 ... ( # `  F ) ) )  ->  ( E `  ( F `
  N ) )  =  { ( P `
  ( N  -  1 ) ) ,  ( P `  N ) } )
 
Theoremvdgrfval 23889* The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( V  e.  W  /\  E  Fn  A  /\  A  e.  X )  ->  ( V VDeg  E )  =  ( u  e.  V  |->  ( ( # ` 
 { x  e.  A  |  u  e.  ( E `  x ) }
 )  +  ( # ` 
 { x  e.  A  |  ( E `  x )  =  { u } } ) ) ) )
 
Theoremvdgrval 23890* The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( ( V  e.  W  /\  E  Fn  A  /\  A  e.  X ) 
 /\  U  e.  V )  ->  ( ( V VDeg 
 E ) `  U )  =  ( ( # `
  { x  e.  A  |  U  e.  ( E `  x ) } )  +  ( # `
  { x  e.  A  |  ( E `
  x )  =  { U } }
 ) ) )
 
Theoremvdgrf 23891 The vertex degree function on finite graphs is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( V  e.  W  /\  E  Fn  A  /\  A  e.  Fin )  ->  ( V VDeg  E ) : V --> NN0 )
 
Theoremvdgr0 23892 The degree of a vertex in an empty graph is zero, because there are no edges. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  (
 ( V  e.  W  /\  U  e.  V ) 
 ->  ( ( V VDeg  (/) ) `  U )  =  0
 )
 
Theoremvdgrun 23893 The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ph  ->  E  Fn  A )   &    |-  ( ph  ->  F  Fn  B )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  V UMGrph  E )   &    |-  ( ph  ->  V UMGrph  F )   &    |-  ( ph  ->  U  e.  V )   =>    |-  ( ph  ->  ( ( V VDeg  ( E  u.  F ) ) `
  U )  =  ( ( ( V VDeg 
 E ) `  U )  +  ( ( V VDeg  F ) `  U ) ) )
 
Theoremvdgr1d 23894 The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ph  ->  V  e.  _V )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  U  e.  V )   =>    |-  ( ph  ->  ( ( V VDeg  { <. A ,  { U } >. } ) `  U )  =  2 )
 
Theoremvdgr1b 23895 The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ph  ->  V  e.  _V )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  U  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  B  =/=  U )   =>    |-  ( ph  ->  (
 ( V VDeg  { <. A ,  { U ,  B } >. } ) `  U )  =  1 )
 
Theoremvdgr1c 23896 The vertex degree of a one-edge graph, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ph  ->  V  e.  _V )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  U  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  B  =/=  U )   =>    |-  ( ph  ->  (
 ( V VDeg  { <. A ,  { B ,  U } >. } ) `  U )  =  1 )
 
Theoremvdgr1a 23897 The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ph  ->  V  e.  _V )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  U  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  B  =/=  U )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  C  =/=  U )   =>    |-  ( ph  ->  (
 ( V VDeg  { <. A ,  { B ,  C } >. } ) `  U )  =  0 )
 
Theoremeupa0 23898 There is an Eulerian path on the empty graph. (Contributed by Mario Carneiro, 7-Apr-2015.)
 |-  (
 ( V  e.  W  /\  A  e.  V ) 
 ->  (/) ( V EulPaths  (/) ) { <. 0 ,  A >. } )
 
Theoremeupares 23899 The restriction of an Eulerian path to an initial segment of the path forms an Eulerian path on the subgraph consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.)
 |-  ( ph  ->  G ( V EulPaths  E ) P )   &    |-  ( ph  ->  N  e.  ( 0 ... ( # `
  G ) ) )   &    |-  F  =  ( E  |`  ( G " ( 1 ... N ) ) )   &    |-  H  =  ( G  |`  ( 1
 ... N ) )   &    |-  Q  =  ( P  |`  ( 0 ... N ) )   =>    |-  ( ph  ->  H ( V EulPaths  F ) Q )
 
Theoremeupap1 23900 Append one path segment to an Eulerian path (enlarging the graph to add the new edge). (Contributed by Mario Carneiro, 7-Apr-2015.)
 |-  ( ph  ->  E  Fn  A )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ph  ->  G ( V EulPaths  E ) P )   &    |-  ( ph  ->  N  =  ( # `  G ) )   &    |-  F  =  ( E  u.  { <. B ,  { ( P `
  N ) ,  C } >. } )   &    |-  H  =  ( G  u.  { <. ( N  +  1 ) ,  B >. } )   &    |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )   =>    |-  ( ph  ->  H ( V EulPaths  F ) Q )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800