HomeHome Metamath Proof Explorer
Theorem List (p. 251 of 321)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22270)
  Hilbert Space Explorer  Hilbert Space Explorer
(22271-23793)
  Users' Mathboxes  Users' Mathboxes
(23794-32080)
 

Theorem List for Metamath Proof Explorer - 25001-25100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremprodfclim1 25001 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq 
 M (  x.  ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremprodfn0 25002* No term of a non-zero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =/=  0 )   =>    |-  ( ph  ->  (  seq  M (  x.  ,  F ) `
  N )  =/=  0 )
 
Theoremprodfrec 25003* The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =/=  0 )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( G `
  k )  =  ( 1  /  ( F `  k ) ) )   =>    |-  ( ph  ->  (  seq  M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq  M (  x.  ,  F ) `
  N ) ) )
 
Theoremprodfdiv 25004* The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( G `
  k )  =/=  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( H `  k
 )  =  ( ( F `  k ) 
 /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq  M (  x.  ,  H ) `  N )  =  ( (  seq  M (  x.  ,  F ) `
  N )  /  (  seq  M (  x. 
 ,  G ) `  N ) ) )
 
19.7.7  Non-trivial convergence
 
Theoremntrivcvg 25005* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq  M (  x.  ,  F )  e.  dom  ~~>  )
 
Theoremntrivcvgn0 25006* A product that converges to a non-zero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  X )   &    |-  ( ph  ->  X  =/=  0 )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y ) )
 
Theoremntrivcvgfvn0 25007* Any value of a product sequence that converges to a non-zero value is itself non-zero. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  X )   &    |-  ( ph  ->  X  =/=  0 )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (  seq  M (  x.  ,  F ) `  N )  =/=  0 )
 
Theoremntrivcvgtail 25008* A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  X )   &    |-  ( ph  ->  X  =/=  0 )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (
 (  ~~>  `  seq  N (  x.  ,  F ) )  =/=  0  /\  seq 
 N (  x.  ,  F )  ~~>  (  ~~>  `  seq  N (  x.  ,  F ) ) ) )
 
Theoremntrivcvgmullem 25009* Lemma for ntrivcvgmul 25010. (Contributed by Scott Fenton, 19-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  P  e.  Z )   &    |-  ( ph  ->  X  =/=  0 )   &    |-  ( ph  ->  Y  =/=  0
 )   &    |-  ( ph  ->  seq  N (  x.  ,  F )  ~~>  X )   &    |-  ( ph  ->  seq 
 P (  x.  ,  G )  ~~>  Y )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  CC )   &    |-  ( ph  ->  N  <_  P )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  E. q  e.  Z  E. w ( w  =/=  0  /\  seq  q (  x.  ,  H )  ~~>  w ) )
 
Theoremntrivcvgmul 25010* The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  E. m  e.  Z  E. z ( z  =/=  0  /\  seq  m (  x.  ,  G )  ~~>  z ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  E. p  e.  Z  E. w ( w  =/=  0  /\  seq 
 p (  x.  ,  H )  ~~>  w ) )
 
19.7.8  Complex products
 
Syntaxcprod 25011 Extend class notation to include complex products.
 class  prod_ k  e.  A B
 
Definitiondf-prod 25012* Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sum 12408 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a non-zero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  prod_ k  e.  A B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  y )  /\  seq  m (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ (
 f `  n )  /  k ]_ B ) ) `  m ) ) ) )
 
Theoremprodex 25013 A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  prod_ k  e.  A B  e.  _V
 
Theoremprodeq1f 25014 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ k A   &    |-  F/_ k B   =>    |-  ( A  =  B  -> 
 prod_ k  e.  A C  =  prod_ k  e.  B C )
 
Theoremprodeq1 25015* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  ( A  =  B  ->  prod_
 k  e.  A C  =  prod_ k  e.  B C )
 
Theoremnfcprod1 25016* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k A   =>    |-  F/_ k prod_ k  e.  A B
 
Theoremnfcprod 25017* Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x prod_ k  e.  A B
 
Theoremprodeq2w 25018* Equality theorem for product, when the class expressions  B and  C are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  B  =  C  ->  prod_ k  e.  A B  =  prod_ k  e.  A C )
 
Theoremprodeq2ii 25019* Equality theorem for product, with the class expressions  B and  C guarded by  _I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  ->  prod_ k  e.  A B  =  prod_ k  e.  A C )
 
Theoremprodeq2 25020* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  e.  A  B  =  C  ->  prod_
 k  e.  A B  =  prod_ k  e.  A C )
 
Theoremcbvprod 25021* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  (
 j  =  k  ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 prod_ j  e.  A B  =  prod_ k  e.  A C
 
Theoremcbvprodv 25022* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  (
 j  =  k  ->  B  =  C )   =>    |-  prod_ j  e.  A B  =  prod_ k  e.  A C
 
Theoremcbvprodi 25023* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  ( j  =  k  ->  B  =  C )   =>    |- 
 prod_ j  e.  A B  =  prod_ k  e.  A C
 
Theoremprodeq1i 25024* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   =>    |- 
 prod_ k  e.  A C  =  prod_ k  e.  B C
 
Theoremprodeq2i 25025* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  (
 k  e.  A  ->  B  =  C )   =>    |-  prod_ k  e.  A B  =  prod_ k  e.  A C
 
Theoremprodeq12i 25026* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   &    |-  ( k  e.  A  ->  C  =  D )   =>    |- 
 prod_ k  e.  A C  =  prod_ k  e.  B D
 
Theoremprodeq1d 25027* Equality deduction for sum. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B C )
 
Theoremprodeq2d 25028* Equality deduction for sum. Note that unlike prodeq2dv 25029, 
k may occur in  ph. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  prod_ k  e.  A C )
 
Theoremprodeq2dv 25029* Equality deduction for sum. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  (
 ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  prod_ k  e.  A C )
 
Theoremprodeq2sdv 25030* Equality deduction for sum. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  prod_ k  e.  A C )
 
Theorem2cprodeq2dv 25031* Equality deduction for double sum. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  (
 ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ j  e.  A prod_ k  e.  B C  =  prod_ j  e.  A prod_ k  e.  B D )
 
Theoremprodeq12dv 25032* Equality deduction for sum. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B D )
 
Theoremprodeq12rdv 25033* Equality deduction for sum. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B D )
 
Theoremprod2id 25034* The second class argument to a sum can be chosen so that it is always a set. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  prod_ k  e.  A B  =  prod_ k  e.  A (  _I  `  B )
 
Theoremprodrblem 25035* Lemma for prodrb 25038. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq  M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq  N (  x.  ,  F ) )
 
Theoremfprodcvg 25036* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  (  seq  M (  x. 
 ,  F ) `  N ) )
 
Theoremprodrblem2 25037* Lemma for prodrb 25038. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  N ) )   =>    |-  ( ( ph  /\  N  e.  ( ZZ>= `  M )
 )  ->  (  seq  M (  x.  ,  F ) 
 ~~>  C  <->  seq  N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodrb 25038* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  N ) )   =>    |-  ( ph  ->  (  seq  M (  x.  ,  F )  ~~>  C  <->  seq  N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodmolem3 25039* Lemma for prodmo 25042. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   &    |-  H  =  ( j  e.  NN  |->  [_ ( K `  j ) 
 /  k ]_ B )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )   &    |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq  1 (  x.  ,  G ) `  M )  =  (  seq  1 (  x.  ,  H ) `  N ) )
 
Theoremprodmolem2a 25040* Lemma for prodmo 25042. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   &    |-  H  =  ( j  e.  NN  |->  [_ ( K `  j ) 
 /  k ]_ B )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  f :
 ( 1 ... N )
 -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( # `
  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  (  seq  1 (  x. 
 ,  G ) `  N ) )
 
Theoremprodmolem2 25041* Lemma for prodmo 25042. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq  1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
Theoremprodmo 25042* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
 )  /  k ]_ B )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) ) ) )
 
Theoremzprod 25043* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  (  ~~>  ` 
 seq  M (  x.  ,  F ) ) )
 
Theoremiprod 25044* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z B  =  (  ~~>  `  seq  M (  x.  ,  F ) ) )
 
Theoremzprodn0 25045* Non-zero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X  =/=  0 )   &    |-  ( ph  ->  seq 
 M (  x.  ,  F )  ~~>  X )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  X )
 
Theoremiprodn0 25046* Non-zero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X  =/=  0 )   &    |-  ( ph  ->  seq 
 M (  x.  ,  F )  ~~>  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z B  =  X )
 
19.7.9  Finite products
 
Theoremfprod 25047* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  (
 k  =  ( F `
  n )  ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  ( 
 seq  1 (  x. 
 ,  G ) `  M ) )
 
Theoremfprodntriv 25048* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
 )
 
Theoremprod0 25049 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  prod_ k  e.  (/) A  =  1
 
Theoremprod1 25050* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  (
 ( A  C_  ( ZZ>=
 `  M )  \/  A  e.  Fin )  -> 
 prod_ k  e.  A
 1  =  1 )
 
Theoremprodfc 25051* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  prod_ j  e.  A ( ( k  e.  A  |->  B ) `  j )  =  prod_ k  e.  A B
 
Theoremfprodf1o 25052* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  (
 k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A B  =  prod_ n  e.  C D )
 
Theoremprodss 25053* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>= `  M ) E. y
 ( y  =/=  0  /\  seq  n (  x. 
 ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B C )
 
Theoremfprodss 25054* Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( B 
 \  A ) ) 
 ->  C  =  1 )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B C )
 
Theoremfprodser 25055* A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  (  seq  M (  x.  ,  F ) `
  N ) )
 
Theoremfprodcl2lem 25056* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  S  C_  CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  S )
 
Theoremfprodcllem 25057* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  S  C_  CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  S )   &    |-  ( ph  ->  1  e.  S )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  S )
 
Theoremfprodcl 25058* Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  CC )
 
Theoremfprodrecl 25059* Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  RR )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  RR )
 
Theoremfprodzcl 25060* Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  ZZ )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  ZZ )
 
Theoremfprodnncl 25061* Closure of a finite product of natural numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  NN )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  NN )
 
Theoremfprodrpcl 25062* Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  RR+ )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  RR+ )
 
Theoremfprodnn0cl 25063* Closure of a finite product of non-negative integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  NN0 )   =>    |-  ( ph  ->  prod_ k  e.  A B  e.  NN0 )
 
Theoremfprodmul 25064* The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A ( B  x.  C )  =  ( prod_ k  e.  A B  x.  prod_ k  e.  A C ) )
 
Theoremfproddiv 25065* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  =/=  0 )   =>    |-  ( ph  ->  prod_ k  e.  A ( B  /  C )  =  ( prod_ k  e.  A B  / 
 prod_ k  e.  A C ) )
 
Theoremprodsn 25066* A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  (
 k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremfprod1 25067* A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  (
 k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  prod_ k  e.  ( M ... M ) A  =  B )
 
Theoremclimprod1 25068 The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  seq  M (  x.  ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremfprodsplit 25069* Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U C  =  (
 prod_ k  e.  A C  x.  prod_ k  e.  B C ) )
 
Theoremfprodm1 25070* Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  B ) )
 
Theoremfprod1p 25071* Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( B  x.  prod_ k  e.  (
 ( M  +  1 ) ... N ) A ) )
 
Theoremfprodp1 25072* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  B ) )
 
Theoremfprodm1s 25073* Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A ) )
 
Theoremfprodp1s 25074* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  [_ ( N  +  1 )  /  k ]_ A ) )
 
Theoremprodsns 25075* A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017.)
 |-  (
 ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfprodfac 25076* Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  ( A  e.  NN0  ->  ( ! `  A )  = 
 prod_ k  e.  (
 1 ... A ) k )
 
Theoremfprodabs 25077* The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A ) )
 
Theoremfprodefsum 25078* Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) ( exp `  A )  =  ( exp ` 
 sum_ k  e.  ( M ... N ) A ) )
 
Theoremfprodeq0 25079* Anything finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  =  N ) 
 ->  A  =  0 )   =>    |-  ( ( ph  /\  K  e.  ( ZZ>= `  N )
 )  ->  prod_ k  e.  ( M ... K ) A  =  0
 )
 
Theoremfprodshft 25080* Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfprodrev 25081* Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfprodconst 25082* The product of constant terms ( k is not free in  B.) (Contributed by Scott Fenton, 12-Jan-2018.)
 |-  (
 ( A  e.  Fin  /\  B  e.  CC )  -> 
 prod_ k  e.  A B  =  ( B ^ ( # `  A ) ) )
 
Theoremfprodn0 25083* A finite product of non-zero terms is non-zero. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  =/=  0 )   =>    |-  ( ph  ->  prod_ k  e.  A B  =/=  0
 )
 
19.7.10  Infinite products
 
Theoremiprodclim 25084* An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  B )   =>    |-  ( ph  ->  prod_ k  e.  Z A  =  B )
 
Theoremiprodclim2 25085* A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  seq  M (  x.  ,  F )  ~~>  prod_ k  e.  Z A )
 
Theoremiprodclim3 25086* The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that  j must not occur in  A. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  ( k  e.  Z  |->  A ) )  ~~>  y )
 )   &    |-  ( ph  ->  F  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  j  e.  Z )  ->  ( F `  j )  = 
 prod_ k  e.  ( M ... j ) A )   =>    |-  ( ph  ->  F  ~~>  prod_ k  e.  Z A )
 
Theoremiprodcl 25087* The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z A  e.  CC )
 
Theoremiprodrecl 25088* The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   =>    |-  ( ph  ->  prod_ k  e.  Z A  e.  RR )
 
Theoremiprodmul 25089* Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq 
 n (  x.  ,  F )  ~~>  y ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  E. m  e.  Z  E. z ( z  =/=  0  /\  seq  m (  x.  ,  G )  ~~>  z ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z ( A  x.  B )  =  ( prod_ k  e.  Z A  x.  prod_ k  e.  Z B ) )
 
19.7.11  Falling and Rising Factorial
 
Syntaxcfallfac 25090 Declare the syntax for the falling factorial.
 class FallFac
 
Syntaxcrisefac 25091 Declare the syntax for the rising factorial.
 class RiseFac
 
Definitiondf-risefac 25092* Define the rising factorial function. This is the function  ( A  x.  ( A  +  1
)  x.  ... ( A  +  N )
) for complex  A and non-negative integers  N. (Contributed by Scott Fenton, 5-Jan-2018.)
 |- RiseFac  =  ( x  e.  CC ,  n  e.  NN0  |->  prod_ k  e.  ( 0 ... ( n  -  1 ) ) ( x  +  k
 ) )
 
Definitiondf-fallfac 25093* Define the falling factorial function. This is the function  ( A  x.  ( A  -  1
)  x.  ... ( A  -  N )
) for complex  A and non-negative integers  N. (Contributed by Scott Fenton, 5-Jan-2018.)
 |- FallFac  =  ( x  e.  CC ,  n  e.  NN0  |->  prod_ k  e.  ( 0 ... ( n  -  1 ) ) ( x  -  k
 ) )
 
Theoremrisefacval 25094* The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  (
 ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A RiseFac  N )  =  prod_ k  e.  (
 0 ... ( N  -  1 ) ) ( A  +  k ) )
 
Theoremfallfacval 25095* The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  (
 ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A FallFac  N )  =  prod_ k  e.  (
 0 ... ( N  -  1 ) ) ( A  -  k ) )
 
Theoremrisefacval2 25096* One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  (
 ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A RiseFac  N )  =  prod_ k  e.  (
 1 ... N ) ( A  +  ( k  -  1 ) ) )
 
Theoremfallfacval2 25097* One-based value of falling factorial. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  (
 ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A FallFac  N )  =  prod_ k  e.  (
 1 ... N ) ( A  -  ( k  -  1 ) ) )
 
Theoremrisefaccllem 25098* Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  S  C_ 
 CC   &    |-  1  e.  S   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  x.  y )  e.  S )   &    |-  ( ( A  e.  S  /\  k  e.  NN0 )  ->  ( A  +  k )  e.  S )   =>    |-  ( ( A  e.  S  /\  N  e.  NN0 )  ->  ( A RiseFac  N )  e.  S )
 
Theoremfallfaccllem 25099* Lemma for falling factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  S  C_ 
 CC   &    |-  1  e.  S   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  x.  y )  e.  S )   &    |-  ( ( A  e.  S  /\  k  e.  NN0 )  ->  ( A  -  k )  e.  S )   =>    |-  ( ( A  e.  S  /\  N  e.  NN0 )  ->  ( A FallFac  N )  e.  S )
 
Theoremrisefaccl 25100 Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  (
 ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A RiseFac  N )  e.  CC )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32080
  Copyright terms: Public domain < Previous  Next >