Home Metamath Proof ExplorerTheorem List (p. 278 of 329) < Previous  Next > Browser slow? Try the Unicode version.

 Color key: Metamath Proof Explorer (1-22423) Hilbert Space Explorer (22424-23946) Users' Mathboxes (23947-32824)

Theorem List for Metamath Proof Explorer - 27701-27800   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremexpcncf 27701* The power function on complex numbers, for fixed exponent N, is continuous. Similar to expcn 18904. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremeluzelcn 27702 A member of a set of upper integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremm1expeven 27703 Exponentiation of negative one to an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremexpcnfg 27704* If is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 27701. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

19.19.3  Limits

Theoremclim1fr1 27705* A class of sequences of fractions that converge to 1 (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremisumneg 27706* Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimrec 27707* Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimmulf 27708* A version of climmul 12428 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimexp 27709* The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremcliminf 27710* A bounded monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimsuselem1 27711* The subsequence index has the expected properties: it belongs to the same upper integers as the original index, and it is always larger or equal than the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimsuse 27712* A subsequence of a converging sequence , converges to the same limit. is the strictly increasing and it is used to index the subsequence (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimrecf 27713* A version of climrec 27707 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimneg 27714* Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremcliminff 27715* A version of climinf 27710 using bound-variable hypotheses instead of distinct variable conditions (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimdivf 27716* Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremclimreeq 27717 If is a real function, then converges to with respect to the standard topology on the reals if and only if it converges to with respect to the standard topology on complex numbers. In the theorem, is defined to be convergence w.r.t. the standard topology on the reals and then represents the statement " converges to , with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)

19.19.4  Derivatives

Theoremdvsinexp 27718* The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremdvcosre 27719 The real derivative of the cosine (Contributed by Glauco Siliprandi, 29-Jun-2017.)

19.19.5  Integrals

Theoremioovolcl 27720 An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremvolioo 27721 The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremitgsin0pilem1 27722* Calculation of the integral for sine on the (0,π) interval (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremibliccsinexp 27723* sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremitgsin0pi 27724 Calculation of the integral for sine on the (0,π) interval (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremiblioosinexp 27725* sin^n on an open integral is integrable (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremitgsinexplem1 27726* Integration by parts is applied to integrate sin^(N+1) (Contributed by Glauco Siliprandi, 29-Jun-2017.)

Theoremitgsinexp 27727* A recursive formula for the integral of sin^N on the interval (0,π) .

(Contributed by Glauco Siliprandi, 29-Jun-2017.)

19.19.6  Stone Weierstrass theorem - real version

Theoremstoweidlem1 27728 Lemma for stoweid 27790. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90; the key step uses Bernoulli's inequality bernneq 11507. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem2 27729* lemma for stoweid 27790: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem3 27730* Lemma for stoweid 27790: if is positive and all terms of a finite product are larger than , then the finite product is larger than A^M. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem4 27731* Lemma for stoweid 27790: a class variable replaces a set variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem5 27732* There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on . Here is used to represent δ in the paper and to represent in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem6 27733* Lemma for stoweid 27790: two class variables replace two set variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem7 27734* This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on , and qn > 1 - ε on . Here it is proven that, for large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable is used to represent (k*δ) in the paper, and is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem8 27735* Lemma for stoweid 27790: two class variables replace two set variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem9 27736* Lemma for stoweid 27790: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem10 27737 Lemma for stoweid 27790. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem11 27738* This lemma is used to prove that there is a function as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem12 27739* Lemma for stoweid 27790. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem13 27740 Lemma for stoweid 27790. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem14 27741* There exists a as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: is an integer and 1 < k * δ < 2. is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem15 27742* This lemma is used to prove the existence of a function as in Lemma 1 from [BrosowskiDeutsh] p. 90: is in the subalgebra, such that 0 ≤ p ≤ 1, p(t_0) = 0, and p > 0 on T - U. Here is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem16 27743* Lemma for stoweid 27790. The subset of functions in the algebra , with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem17 27744* This lemma proves that the function (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem18 27745* This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem19 27746* If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem20 27747* If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem21 27748* Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem22 27749* If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem23 27750* This lemma is used to prove the existence of a function pt as in the beginning of Lemma 1 [BrosowskiDeutsh] p. 90: for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem24 27751* This lemma proves that for sufficiently large, qn( t ) > ( 1 - epsilon ), for all in : see Lemma 1 [BrosowskiDeutsh] p. 90, (at the bottom of page 90). is used to represent qn in the paper, to represent in the paper, to represent , to represent δ, and to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem25 27752* This lemma proves that for n sufficiently large, qn( t ) < ε, for all in : see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). is used to represent qn in the paper, to represent n in the paper, to represent k, to represent δ, to represent p, and to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem26 27753* This lemma is used to prove that there is a function as in the proof of [BrosowskiDeutsh] p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here is used to represnt j in the paper, is used to represent A in the paper, is used to represent t, and is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem27 27754* This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem28 27755* There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on . Here is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem29 27756* When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem30 27757* This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem31 27758* This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that is a finite subset of , indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on . Here M is used to represent m in the paper, is used to represent ε in the paper, vi is used to represent V(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem32 27759* If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem33 27760* If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem34 27761* This lemma proves that for all in there is a as in the proof of [BrosowskiDeutsh] p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem35 27762* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem36 27763* This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem37 27764* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem38 27765* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, is used for p(t_i). (Contributed by GlaucoSiliprandi, 20-Apr-2017.)

Theoremstoweidlem39 27766* This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that is a finite subset of , indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on . Here is used to represent A in the paper's Lemma 2 (because is used for the subalgebra), is used to represent m in the paper, is used to represent ε, and vi is used to represent V(ti). is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem40 27767* This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem41 27768* This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn";. Here is used to represent ε in the paper, and to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem42 27769* This lemma is used to prove that built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here is used to represent in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem43 27770* This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem44 27771* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem45 27772* This lemma proves that, given an appropriate (in another theorem we prove such a exists), there exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 ( at the top of page 91): 0 <= qn <= 1 , qn < ε on T \ U, and qn > 1 - ε on . We use y to represent the final qn in the paper (the one with n large enough), to represent in the paper, to represent , to represent δ, to represent ε, and to represent . (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem46 27773* This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem47 27774* Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem48 27775* This lemma is used to prove that built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on . Here is used to represent in the paper, is used to represent ε in the paper, and is used to represent in the paper (because is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem49 27776* There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on , and qn > 1 - ε on . Here y is used to represent the final qn in the paper (the one with n large enough), represents in the paper, represents , represents δ, represents ε, and represents . (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem50 27777* This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem51 27778* There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here is used to represent in the paper, because here is used for the subalgebra of functions. is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem52 27779* There exists a neighborood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem53 27780* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem54 27781* There exists a function as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here is used to represent in the paper, because here is used for the subalgebra of functions. is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem55 27782* This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem56 27783* This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here is used to represent t0 in the paper, is used to represent in the paper, and is used to represent ε (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem57 27784* There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem58 27785* This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem59 27786* This lemma proves that there exists a function as in the proof in [BrosowskiDeutsh] p. 91, after Lemma 2: xj is in the subalgebra, 0 <= xj <= 1, xj < ε / n on Aj (meaning A in the paper), xj > 1 - \epslon / n on Bj. Here is used to represent A in the paper (because A is used for the subalgebra of functions), is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem60 27787* This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all in , there is a such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here is used to represent f in the paper, and is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)

Theoremstoweidlem61 27788* This lemma proves that there exists a function as in the proof in [BrosowskiDeutsh] p. 92: is in the subalgebra, and for all in , abs( f(t) - g(t) ) < 2*ε. Here is used to represent f in the paper, and is used to represent ε. For this lemma there's the further assumption that the function to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
<