HomeHome Metamath Proof Explorer
Theorem List (p. 291 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22421)
  Hilbert Space Explorer  Hilbert Space Explorer
(22422-23944)
  Users' Mathboxes  Users' Mathboxes
(23945-32762)
 

Theorem List for Metamath Proof Explorer - 29001-29100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremonfrALTlem2VD 29001* Virtual deduction proof of onfrALTlem2 28632. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 28632 is onfrALTlem2VD 29001 without virtual deductions and was automatically derived from onfrALTlem2VD 29001.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) ) ).
2:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
3:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
4::  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
5::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ).
6:5:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  a ).
7:4:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
8:6,7:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  On ).
9:8:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Ord  x ).
10:9:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Tr  x ).
11:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
12:11:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
13:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
14:10,12,13:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
15:3,14:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
16:13,15:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x )  i^i  y ) ).
17:16:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
18:17:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
19:18:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y ) ).
20::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
21:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( ( a  i^i  x )  i^i  y )  =  (/) ).
22:19,21:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  =  (/) ).
23:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  ( a  i^i  x ) ).
24:23:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  a ).
25:22,24:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
26:25:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
27:26:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  A. y ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
28:27:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
29::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y  )  =  (/) ).
30:29:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
31:28,30:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
qed:31:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (
 a  C_  On  /\  a  =/= 
 (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
 
TheoremonfrALTlem1VD 29002* Virtual deduction proof of onfrALTlem1 28634. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 28634 is onfrALTlem1VD 29002 without virtual deductions and was automatically derived from onfrALTlem1VD 29002.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) ).
2:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) ).
3:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ).
4::  |-  ( [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/)  )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
5:4:  |-  A. y ( [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
6:5:  |-  ( E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
7:3,6:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
8::  |-  ( E. y  e.  a ( a  i^i  y )  =  (/)  <->  E. y (  y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
qed:7,8:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (
 a  C_  On  /\  a  =/= 
 (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
 
TheoremonfrALTVD 29003 Virtual deduction proof of onfrALT 28635. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 28635 is onfrALTVD 29003 without virtual deductions and was automatically derived from onfrALTVD 29003.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
2::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
3:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  ( -.  ( a  i^i  x )  =  (/)  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
4:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  ( ( a  i^i  x )  =  (/)  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
5::  |-  ( ( a  i^i  x )  =  (/)  \/  -.  ( a  i^i  x )  =  (/) )
6:5,4,3:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
7:6:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( x  e.  a  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
8:7:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  A. x ( x  e.  a  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
9:8:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( E. x x  e.  a  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
10::  |-  ( a  =/=  (/)  <->  E. x x  e.  a )
11:9,10:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  =/=  (/)  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
12::  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
13:12:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  a  =/=  (/) ).
14:13,11:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
15:14:  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
16:15:  |-  A. a ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a ( a  i^i  y )  =  (/) )
qed:16:  |-  _E  Fr  On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  _E  Fr  On
 
Theoremcsbeq2gVD 29004 Virtual deduction proof of csbeq2g 28636. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2g 28636 is csbeq2gVD 29004 without virtual deductions and was automatically derived from csbeq2gVD 29004.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( A. x B  =  C  ->  [. A  /  x ].  B  =  C ) ).
3:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) ).
4:2,3:  |-  (. A  e.  V  ->.  ( A. x B  =  C  ->  [_ A  /  x  ]_ B  =  [_ A  /  x ]_ C ) ).
qed:4:  |-  ( A  e.  V  ->  ( A. x B  =  C  ->  [_ A  /  x ]_  B  =  [_ A  /  x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  (
 A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
 
TheoremcsbsngVD 29005 Virtual deduction proof of csbsng 3867. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 3867 is csbsngVD 29005 without virtual deductions and was automatically derived from csbsngVD 29005.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  =  B  <->  [_ A  /  x ]_ y  =  [_ A  /  x ]_ B ) ).
3:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ y  =  y ).
4:3:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ y  =  [_ A  /  x ]_ B  <->  y  =  [_ A  /  x ]_ B ) ).
5:2,4:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) ).
6:5:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) ).
7:6:  |-  (. A  e.  V  ->.  { y  |  [. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
8:1:  |-  (. A  e.  V  ->.  { y  |  [. A  /  x ]. y  =  B }  =  [_ A  /  x ]_ { y  |  y  =  B } ).
9:7,8:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
10::  |-  { B }  =  { y  |  y  =  B }
11:10:  |-  A. x { B }  =  { y  |  y  =  B }
12:1,11:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  [_  A  /  x ]_ { y  |  y  =  B } ).
13:9,12:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  {  y  |  y  =  [_ A  /  x ]_ B } ).
14::  |-  { [_ A  /  x ]_ B }  =  { y  |  y  =  [_ A  /  x ]_ B }
15:13,14:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  {  [_ A  /  x ]_ B } ).
qed:15:  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_  A  /  x ]_ B } )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B } )
 
TheoremcsbxpgVD 29006 Virtual deduction proof of csbxpg 4905. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxpg 4905 is csbxpgVD 29006 without virtual deductions and was automatically derived from csbxpgVD 29006.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. w  e.  B  <->  [_ A  /  x ]_ w  e.  [_ A  /  x ]_ B ) ).
3:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ w  =  w ).
4:3:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ w  e.  [_ A  /  x ]_ B  <->  w  e.  [_ A  /  x ]_ B ) ).
5:2,4:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. w  e.  B  <->  w  e.  [_ A  /  x ]_ B ) ).
6:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  C  <->  [_ A  /  x ]_ y  e.  [_ A  /  x ]_ C ) ).
7:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ y  =  y ).
8:7:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ y  e.  [_ A  /  x ]_ C  <->  y  e.  [_ A  /  x ]_ C ) ).
9:6,8:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) ).
10:5,9:  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. w  e.  B  /\  [. A  /  x ]. y  e.  C )  <->  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ).
11:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( w  e.  B  /\  y  e.  C )  <->  ( [. A  /  x ]. w  e.  B  /\  [. A  /  x ]. y  e.  C ) ) ).
12:10,11:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( w  e.  B  /\  y  e.  C )  <->  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ).
13:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  =  <. w ,.  y >.  <->  z  =  <. w ,  y >. ) ).
14:12,13:  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  =  <. w  ,. y >.  /\  [. A  /  x ]. ( w  e.  B  /\  y  e.  C ) )  <->  ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
15:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  =  <. w  ,. y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  ( [. A  /  x ]. z  =  <. w ,  y >.  /\  [. A  /  x ]. ( w  e.  B  /\  y  e.  C ) ) ) ).
16:14,15:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  =  <. w  ,. y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
17:16:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
18:17:  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
19:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y [. A  /  x ]. ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) ) ).
20:18,19:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
21:20:  |-  (. A  e.  V  ->.  A. w ( [. A  /  x ]. E. y (  z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
22:21:  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. E. y (  z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
23:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. w E. y (  z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. w [. A  /  x ]. E. y  ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) ) ).
24:22,23:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. w E. y (  z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
25:24:  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. w E.  y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) ).
26:25:  |-  (. A  e.  V  ->.  { z  |  [. A  /  x ]. E. w E.  y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) }  =  { z  |  E. w E. y (  z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }  ).
27:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. w E.  y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) }  =  { z  |  [. A  /  x ].  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) } ).
28:26,27:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. w E.  y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) }  =  { z  |  E. w E. y (  z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }  ).
29::  |-  { <. w ,. y >.  |  ( w  e.  B  /\  y  e.  C ) }  =  { z  |  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) }
30::  |-  ( B  X.  C )  =  { <. w ,. y >.  |  ( w  e.  B  /\  y  e.  C ) }
31:29,30:  |-  ( B  X.  C )  =  { z  |  E. w E. y ( z  =  <. w  ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) }
32:31:  |-  A. x ( B  X.  C )  =  { z  |  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) }
33:1,32:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  X.  C )  =  [_ A  /  x ]_ { z  |  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C ) ) } ).
34:28,33:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  X.  C )  =  { z  |  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) } ).
35::  |-  { <. w ,. y >.  |  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) }  =  { z  |  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }
36::  |-  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C )  =  {  <. w ,  y >.  |  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) }
37:35,36:  |-  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C )  =  { z  |  E. w E. y ( z  =  <. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }
38:34,37:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C ) ).
qed:38:  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  X.  C )  =  (  [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C ) )
 
TheoremcsbresgVD 29007 Virtual deduction proof of csbresg 5149. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbresg 5149 is csbresgVD 29007 without virtual deductions and was automatically derived from csbresgVD 29007.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ _V  =  _V ).
3:2:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ).
4:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) ).
5:3,4:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ).
6:5:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
7:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) ).
8:6,7:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
9::  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
10:9:  |-  A. x ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
11:1,10:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) ) ).
12:8,11:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  (  [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
13::  |-  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )  =  (  [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) )
14:12,13:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  (  [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) ).
qed:14:  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (  [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
 
TheoremcsbrngVD 29008 Virtual deduction proof of csbrng 5114. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrng 5114 is csbrngVD 29008 without virtual deductions and was automatically derived from csbrngVD 29008.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. <. w ,. y >.  e.  B  <->  [_ A  /  x ]_ <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
3:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ <. w ,. y >.  =  <. w ,  y >. ).
4:3:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ <. w ,. y >.  e.  [_ A  /  x ]_ B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
5:2,4:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. <. w ,. y >.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
6:5:  |-  (. A  e.  V  ->.  A. w ( [. A  /  x ]. <. w ,.  y >.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
7:6:  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. <. w ,.  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
8:1:  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. <. w ,.  y >.  e.  B  <->  [. A  /  x ]. E. w <. w ,  y >.  e.  B ) ).
9:7,8:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. w <. w  ,. y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
10:9:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. E. w  <. w ,  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
11:10:  |-  (. A  e.  V  ->.  { y  |  [. A  /  x ]. E. w <.  w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
12:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  E. w  <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } ).
13:11,12:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  E. w  <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
14::  |-  ran  B  =  { y  |  E. w <. w ,. y >.  e.  B }
15:14:  |-  A. x ran  B  =  { y  |  E. w <. w ,. y >.  e.  B }
16:1,15:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B } ).
17:13,16:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
18::  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w  ,. y >.  e.  [_ A  /  x ]_ B }
19:17,18:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  ran  [_  A  /  x ]_ B ).
qed:19:  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
 
Theoremcsbima12gALTVD 29009 Virtual deduction proof of csbima12gALT 5214. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12gALT 5214 is csbima12gALTVD 29009 without virtual deductions and was automatically derived from csbima12gALTVD 29009.
1::  |-  (. A  e.  C  ->.  A  e.  C ).
2:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F  |`  B )  =  (  [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
3:2:  |-  (. A  e.  C  ->.  ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
4:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B ) ).
5:3,4:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
6::  |-  ( F " B )  =  ran  ( F  |`  B )
7:6:  |-  A. x ( F " B )  =  ran  ( F  |`  B )
8:1,7:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B )  =  [_  A  /  x ]_ ran  ( F  |`  B ) ).
9:5,8:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
10::  |-  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B )
11:9,10:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B )  =  (  [_ A  /  x ]_ F " [_ A  /  x ]_ B ) ).
qed:11:  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F " B )  =  ( [_  A  /  x ]_ F " [_ A  /  x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F " B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )
 
TheoremcsbunigVD 29010 Virtual deduction proof of csbunig 4023. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunig 4023 is csbunigVD 29010 without virtual deductions and was automatically derived from csbunigVD 29010.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) ).
4:2,3:  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
5:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
6:4,5:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
7:6:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
8:7:  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
10:8,9:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
11:10:  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
12:11:  |-  (. A  e.  V  ->.  { z  |  [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
13:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ).
14:12,13:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
15::  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
16:15:  |-  A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
17:1,16:  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
18:1,17:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
19:14,18:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
20::  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }
21:19,20:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
qed:21:  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
 
Theoremcsbfv12gALTVD 29011 Virtual deduction proof of csbfv12gALT 5739. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALT 5739 is csbfv12gALTVD 29011 without virtual deductions and was automatically derived from csbfv12gALTVD 29011.
1::  |-  (. A  e.  C  ->.  A  e.  C ).
2:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y }  =  {  y } ).
3:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B  } )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } ) ).
4:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { B }  =  {  [_ A  /  x ]_ B } ).
5:4:  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
6:3,5:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B  } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
7:1:  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F " {  B } )  =  { y }  <->  [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ { y } ) ).
8:6,2:  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ ( F " {  B } )  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
9:7,8:  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F " {  B } )  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ).
10:9:  |-  (. A  e.  C  ->.  A. y ( [. A  /  x ]. ( F  " { B } )  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
11:10:  |-  (. A  e.  C  ->.  { y  |  [. A  /  x ]. ( F  " { B } )  =  { y } }  =  { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
12:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F  " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B } )  =  { y } } ).
13:11,12:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F  " { B } )  =  { y } }  =  { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y  } } ).
14:13:  |-  (. A  e.  C  ->.  U. [_ A  /  x ]_ { y  |  (  F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F "  { [_ A  /  x ]_ B } )  =  { y } } ).
15:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  (  F " { B } )  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } } ).
16:14,15:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  (  F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
17::  |-  ( F `  B )  =  U. { y  |  ( F " { B } )  =  { y } }
18:17:  |-  A. x ( F `  B )  =  U. { y  |  ( F " { B  } )  =  { y } }
19:1,18:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } } ).
20:16,19:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
21::  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
22:20,21:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ).
qed:22:  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
 
Theoremcon5VD 29012 Virtual deduction proof of con5 28606. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 28606 is con5VD 29012 without virtual deductions and was automatically derived from con5VD 29012.
1::  |-  (. ( ph  <->  -.  ps )  ->.  ( ph  <->  -.  ps ) ).
2:1:  |-  (. ( ph  <->  -.  ps )  ->.  ( -.  ps  ->  ph ) ).
3:2:  |-  (. ( ph  <->  -.  ps )  ->.  ( -.  ph  ->  -.  -.  ps  ) ).
4::  |-  ( ps  <->  -.  -.  ps )
5:3,4:  |-  (. ( ph  <->  -.  ps )  ->.  ( -.  ph  ->  ps ) ).
qed:5:  |-  ( ( ph  <->  -.  ps )  ->  ( -.  ph  ->  ps ) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  <->  -.  ps )  ->  ( -.  ph  ->  ps )
 )
 
TheoremrelopabVD 29013 Virtual deduction proof of relopab 5001. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5001 is relopabVD 29013 without virtual deductions and was automatically derived from relopabVD 29013.
1::  |-  (. y  =  v  ->.  y  =  v ).
2:1:  |-  (. y  =  v  ->.  <. x ,. y >.  =  <. x ,. v  >. ).
3::  |-  (. y  =  v ,. x  =  u  ->.  x  =  u ).
4:3:  |-  (. y  =  v ,. x  =  u  ->.  <. x ,. v >.  =  <.  u ,  v >. ).
5:2,4:  |-  (. y  =  v ,. x  =  u  ->.  <. x ,. y >.  =  <.  u ,  v >. ).
6:5:  |-  (. y  =  v ,. x  =  u  ->.  ( z  =  <. x ,. y  >.  ->  z  =  <. u ,  v >. ) ).
7:6:  |-  (. y  =  v  ->.  ( x  =  u  ->  ( z  =  <. x ,.  y >.  ->  z  =  <. u ,  v >. ) ) ).
8:7:  |-  ( y  =  v  ->  ( x  =  u  ->  ( z  =  <. x ,. y  >.  ->  z  =  <. u ,  v >. ) ) )
9:8:  |-  ( E. v y  =  v  ->  E. v ( x  =  u  ->  ( z  =  <. x ,  y >.  ->  z  =  <. u ,  v >. ) ) )
90::  |-  ( v  =  y  <->  y  =  v )
91:90:  |-  ( E. v v  =  y  <->  E. v y  =  v )
92::  |-  E. v v  =  y
10:91,92:  |-  E. v y  =  v
11:9,10:  |-  E. v ( x  =  u  ->  ( z  =  <. x ,. y >.  ->  z  =  <. u ,  v >. ) )
12:11:  |-  ( x  =  u  ->  E. v ( z  =  <. x ,. y >.  ->  z  =  <. u ,  v >. ) )
13::  |-  ( E. v ( z  =  <. x ,. y >.  ->  z  =  <. u  ,  v >. )  ->  ( z  =  <. x ,  y >.  ->  E. v z  =  <. u ,  v >. ) )
14:12,13:  |-  ( x  =  u  ->  ( z  =  <. x ,. y >.  ->  E. v  z  =  <. u ,  v >. ) )
15:14:  |-  ( E. u x  =  u  ->  E. u ( z  =  <. x ,. y  >.  ->  E. v z  =  <. u ,  v >. ) )
150::  |-  ( u  =  x  <->  x  =  u )
151:150:  |-  ( E. u u  =  x  <->  E. u x  =  u )
152::  |-  E. u u  =  x
16:151,152:  |-  E. u x  =  u
17:15,16:  |-  E. u ( z  =  <. x ,. y >.  ->  E. v z  =  <.  u ,  v >. )
18:17:  |-  ( z  =  <. x ,. y >.  ->  E. u E. v z  =  <.  u ,  v >. )
19:18:  |-  ( E. y z  =  <. x ,. y >.  ->  E. y E. u  E. v z  =  <. u ,  v >. )
20::  |-  ( E. y E. u E. v z  =  <. u ,. v >.  ->  E. u E. v z  =  <. u ,  v >. )
21:19,20:  |-  ( E. y z  =  <. x ,. y >.  ->  E. u E. v z  =  <. u ,  v >. )
22:21:  |-  ( E. x E. y z  =  <. x ,. y >.  ->  E. x  E. u E. v z  =  <. u ,  v >. )
23::  |-  ( E. x E. u E. v z  =  <. u ,. v >.  ->  E. u E. v z  =  <. u ,  v >. )
24:22,23:  |-  ( E. x E. y z  =  <. x ,. y >.  ->  E. u  E. v z  =  <. u ,  v >. )
25:24:  |-  { z  |  E. x E. y z  =  <. x ,. y >. }  C_  { z  |  E. u E. v z  =  <. u ,  v >. }
26::  |-  x  e.  _V
27::  |-  y  e.  _V
28:26,27:  |-  ( x  e.  _V  /\  y  e.  _V )
29:28:  |-  ( z  =  <. x ,. y >.  <->  ( z  =  <. x ,. y  >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) )
30:29:  |-  ( E. y z  =  <. x ,. y >.  <->  E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) )
31:30:  |-  ( E. x E. y z  =  <. x ,. y >.  <->  E. x  E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) )
32:31:  |-  { z  |  E. x E. y z  =  <. x ,. y >. }  =  {  z  |  E. x E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) }
320:25,32:  |-  { z  |  E. x E. y ( z  =  <. x ,. y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) }  C_  { z  |  E. u E. v z  =  <. u ,  v >. }
33::  |-  u  e.  _V
34::  |-  v  e.  _V
35:33,34:  |-  ( u  e.  _V  /\  v  e.  _V )
36:35:  |-  ( z  =  <. u ,. v >.  <->  ( z  =  <. u ,. v  >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) )
37:36:  |-  ( E. v z  =  <. u ,. v >.  <->  E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) )
38:37:  |-  ( E. u E. v z  =  <. u ,. v >.  <->  E. u  E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) )
39:38:  |-  { z  |  E. u E. v z  =  <. u ,. v >. }  =  {  z  |  E. u E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) }
40:320,39:  |-  { z  |  E. x E. y ( z  =  <. x ,. y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) }  C_  { z  |  E. u E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) }
41::  |-  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V  ) }  =  { z  |  E. x E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) )  }
42::  |-  { <. u ,. v >.  |  ( u  e.  _V  /\  v  e.  _V  ) }  =  { z  |  E. u E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) )  }
43:40,41,42:  |-  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V  ) }  C_  { <. u ,  v >.  |  ( u  e.  _V  /\  v  e.  _V ) }
44::  |-  { <. u ,. v >.  |  ( u  e.  _V  /\  v  e.  _V  ) }  =  ( _V  X.  _V )
45:43,44:  |-  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V  ) }  C_  ( _V  X.  _V )
46:28:  |-  ( ph  ->  ( x  e.  _V  /\  y  e.  _V ) )
47:46:  |-  { <. x ,. y >.  |  ph }  C_  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V ) }
48:45,47:  |-  { <. x ,. y >.  |  ph }  C_  ( _V  X.  _V )
qed:48:  |-  Rel  { <. x ,. y >.  |  ph }
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  Rel  {
 <. x ,  y >.  | 
 ph }
 
Theorem19.41rgVD 29014 Virtual deduction proof of 19.41rg 28637. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 28637 is 19.41rgVD 29014 without virtual deductions and was automatically derived from 19.41rgVD 29014. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  ( ps  ->  ( ph  ->  ( ph  /\  ps ) ) )
2:1:  |-  ( ( ps  ->  A. x ps )  ->  ( ps  ->  ( ph  ->  (  ph  /\  ps ) ) ) )
3:2:  |-  A. x ( ( ps  ->  A. x ps )  ->  ( ps  ->  ( ph  ->  ( ph  /\  ps ) ) ) )
4:3:  |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ps  ->  A. x ( ph  ->  ( ph  /\  ps ) ) ) )
5::  |-  (. A. x ( ps  ->  A. x ps )  ->.  A. x ( ps  ->  A. x ps ) ).
6:4,5:  |-  (. A. x ( ps  ->  A. x ps )  ->.  ( A. x ps  ->  A. x ( ph  ->  ( ph  /\  ps ) ) ) ).
7::  |-  (. A. x ( ps  ->  A. x ps ) ,. A. x ps  ->.  A. x ps ).
8:6,7:  |-  (. A. x ( ps  ->  A. x ps ) ,. A. x ps  ->.  A. x ( ph  ->  ( ph  /\  ps ) ) ).
9:8:  |-  (. A. x ( ps  ->  A. x ps ) ,. A. x ps  ->.  ( E. x ph  ->  E. x ( ph  /\  ps ) ) ).
10:9:  |-  (. A. x ( ps  ->  A. x ps )  ->.  ( A. x ps  ->  ( E. x ph  ->  E. x ( ph  /\  ps ) ) ) ).
11:5:  |-  (. A. x ( ps  ->  A. x ps )  ->.  ( ps  ->  A.  x ps ) ).
12:10,11:  |-  (. A. x ( ps  ->  A. x ps )  ->.  ( ps  ->  (  E. x ph  ->  E. x ( ph  /\  ps ) ) ) ).
13:12:  |-  (. A. x ( ps  ->  A. x ps )  ->.  ( E. x ph  ->  ( ps  ->  E. x ( ph  /\  ps ) ) ) ).
14:13:  |-  (. A. x ( ps  ->  A. x ps )  ->.  ( ( E. x  ph  /\  ps )  ->  E. x ( ph  /\  ps ) ) ).
qed:14:  |-  ( A. x ( ps  ->  A. x ps )  ->  ( ( E. x ph  /\  ps )  ->  E. x ( ph  /\  ps ) ) )
 |-  ( A. x ( ps  ->  A. x ps )  ->  ( ( E. x ph 
 /\  ps )  ->  E. x ( ph  /\  ps )
 ) )
 
Theorem2pm13.193VD 29015 Virtual deduction proof of 2pm13.193 28639. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 28639 is 2pm13.193VD 29015 without virtual deductions and was automatically derived from 2pm13.193VD 29015. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) ).
2:1:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( x  =  u  /\  y  =  v ) ).
3:2:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  x  =  u ).
4:1:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  [ u  /  x ] [ v  /  y ] ph ).
5:3,4:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( [ u  /  x ] [ v  /  y ] ph  /\  x  =  u ) ).
6:5:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( [ v  /  y ] ph  /\  x  =  u ) ).
7:6:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  [ v  /  y ] ph ).
8:2:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  y  =  v ).
9:7,8:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( [ v  /  y ] ph  /\  y  =  v ) ).
10:9:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( ph  /\  y  =  v ) ).
11:10:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ph ).
12:2,11:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( ( x  =  u  /\  y  =  v )  /\  ph ) ).
13:12:  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  ->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
14::  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( (  x  =  u  /\  y  =  v )  /\  ph ) ).
15:14:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( x  =  u  /\  y  =  v ) ).
16:15:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  y  =  v ).
17:14:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ph  ).
18:16,17:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  (  ph  /\  y  =  v ) ).
19:18:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [  v  /  y ] ph  /\  y  =  v ) ).
20:15:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  x  =  u ).
21:19:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  [ v  /  y ] ph ).
22:20,21:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [  v  /  y ] ph  /\  x  =  u ) ).
23:22:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [  u  /  x ] [ v  /  y ] ph  /\  x  =  u ) ).
24:23:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  [ u  /  x ] [ v  /  y ] ph ).
25:15,24:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( (  x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) ).
26:25:  |-  ( ( ( x  =  u  /\  y  =  v )  /\  ph )  ->  ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
qed:13,26:  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
 |-  (
 ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [
 v  /  y ] ph )  <->  ( ( x  =  u  /\  y  =  v )  /\  ph )
 )
 
TheoremhbimpgVD 29016 Virtual deduction proof of hbimpg 28641. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 28641 is hbimpgVD 29016 without virtual deductions and was automatically derived from hbimpgVD 29016. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ).
2:1:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ph  ->  A. x ph ) ).
3::  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,  -.  ph  ->.  -.  ph ).
4:2:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( -.  ph  ->  A. x -.  ph ) ).
5:4:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( -.  ph  ->  A. x -.  ph ) ).
6:3,5:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,  -.  ph  ->.  A. x -.  ph ).
7::  |-  ( -.  ph  ->  ( ph  ->  ps ) )
8:7:  |-  ( A. x -.  ph  ->  A. x ( ph  ->  ps ) )
9:6,8:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,  -.  ph  ->.  A. x ( ph  ->  ps ) ).
10:9:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( -.  ph  ->  A. x ( ph  ->  ps ) ) ).
11::  |-  ( ps  ->  ( ph  ->  ps ) )
12:11:  |-  ( A. x ps  ->  A. x ( ph  ->  ps ) )
13:1:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ps  ->  A. x ps ) ).
14:13:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ps  ->  A. x ps ) ).
15:14,12:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ps  ->  A. x ( ph  ->  ps ) ) ).
16:10,15:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ( -.  ph  \/  ps )  ->  A. x ( ph  ->  ps ) ) ).
17::  |-  ( ( ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
18:16,17:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) ).
19::  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x A. x (  ph  ->  A. x ph ) )
20::  |-  ( A. x ( ps  ->  A. x ps )  ->  A. x A. x (  ps  ->  A. x ps ) )
21:19,20:  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->  A. x ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) )
22:21,18:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) ).
qed:22:  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->  A. x ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) )
 |-  (
 ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
 ->  A. x ps )
 )  ->  A. x ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) )
 
TheoremhbalgVD 29017 Virtual deduction proof of hbalg 28642. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 28642 is hbalgVD 29017 without virtual deductions and was automatically derived from hbalgVD 29017. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. A. y ( ph  ->  A. x ph )  ->.  A. y ( ph  ->  A. x ph ) ).
2:1:  |-  (. A. y ( ph  ->  A. x ph )  ->.  ( A. y ph  ->  A. y A. x ph ) ).
3::  |-  ( A. y A. x ph  ->  A. x A. y ph )
4:2,3:  |-  (. A. y ( ph  ->  A. x ph )  ->.  ( A. y ph  ->  A. x A. y ph ) ).
5::  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y A. y (  ph  ->  A. x ph ) )
6:5,4:  |-  (. A. y ( ph  ->  A. x ph )  ->.  A. y ( A.  y ph  ->  A. x A. y ph ) ).
qed:6:  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y  ph  ->  A. x A. y ph ) )
 |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y ph  ->  A. x A. y ph ) )
 
TheoremhbexgVD 29018 Virtual deduction proof of hbexg 28643. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 28643 is hbexgVD 29018 without virtual deductions and was automatically derived from hbexgVD 29018. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( ph  ->  A. x ph ) ).
2:1:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  A. x ( ph  ->  A. x ph ) ).
3:2:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( ph  ->  A. x ph ) ).
4:3:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( -.  ph  ->  A. x -.  ph ) ).
5::  |-  ( A. x A. y ( ph  ->  A. x ph )  <->  A. y  A. x ( ph  ->  A. x ph ) )
6::  |-  ( A. y A. x ( ph  ->  A. x ph )  ->  A. y  A. y A. x ( ph  ->  A. x ph ) )
7:5:  |-  ( A. y A. x A. y ( ph  ->  A. x ph )  <->  A. y A. y A. x ( ph  ->  A. x ph ) )
8:5,6,7:  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. y  A. x A. y ( ph  ->  A. x ph ) )
9:8,4:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  A. x ( -.  ph  ->  A. x -.  ph ) ).
10:9:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( -.  ph  ->  A. x -.  ph ) ).
11:10:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  ( -.  ph  ->  A. x -.  ph ) ).
12:11:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  ( A. y -.  ph  ->  A. x A. y -.  ph ) ).
13:12:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( A.  y -.  ph  ->  A. x A. y -.  ph ) ).
14::  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x  A. x A. y ( ph  ->  A. x ph ) )
15:13,14:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( A. y -.  ph  ->  A. x A. y -.  ph ) ).
16:15:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( -.  A. y -.  ph  ->  A. x -.  A. y -.  ph ) ).
17:16:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( -.  A. y -.  ph  ->  A. x -.  A. y -.  ph ) ).
18::  |-  ( E. y ph  <->  -.  A. y -.  ph )
19:17,18:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( E.  y ph  ->  A. x -.  A. y -.  ph ) ).
20:18:  |-  ( A. x E. y ph  <->  A. x -.  A. y -.  ph )
21:19,20:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( E.  y ph  ->  A. x E. y ph ) ).
22:8,21:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  ( E. y ph  ->  A. x E. y ph ) ).
23:14,22:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( E. y ph  ->  A. x E. y ph ) ).
qed:23:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( E. y ph  ->  A. x E. y ph ) ).
 |-  ( A. x A. y (
 ph  ->  A. x ph )  ->  A. x A. y
 ( E. y ph  ->  A. x E. y ph ) )
 
Theorema9e2eqVD 29019* The following User's Proof is a Virtual Deduction proof (see: wvd1 28660) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. a9e2eq 28644 is a9e2eqVD 29019 without virtual deductions and was automatically derived from a9e2eqVD 29019. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. A. x x  =  y  ->.  A. x x  =  y ).
2::  |-  (. A. x x  =  y ,. x  =  u  ->.  x  =  u ).
3:1:  |-  (. A. x x  =  y  ->.  x  =  y ).
4:2,3:  |-  (. A. x x  =  y ,. x  =  u  ->.  y  =  u ).
5:2,4:  |-  (. A. x x  =  y ,. x  =  u  ->.  ( x  =  u  /\  y  =  u ) ).
6:5:  |-  (. A. x x  =  y  ->.  ( x  =  u  ->  ( x  =  u  /\  y  =  u ) ) ).
7:6:  |-  ( A. x x  =  y  ->  ( x  =  u  ->  ( x  =  u  /\  y  =  u ) ) )
8:7:  |-  ( A. x A. x x  =  y  ->  A. x ( x  =  u  ->  (  x  =  u  /\  y  =  u ) ) )
9::  |-  ( A. x x  =  y  <->  A. x A. x x  =  y )
10:8,9:  |-  ( A. x x  =  y  ->  A. x ( x  =  u  ->  ( x  =  u  /\  y  =  u ) ) )
11:1,10:  |-  (. A. x x  =  y  ->.  A. x ( x  =  u  ->  ( x  =  u  /\  y  =  u ) ) ).
12:11:  |-  (. A. x x  =  y  ->.  ( E. x x  =  u  ->  E. x  ( x  =  u  /\  y  =  u ) ) ).
13::  |-  E. x x  =  u
14:13,12:  |-  (. A. x x  =  y  ->.  E. x ( x  =  u  /\  y  =  u  ) ).
140:14:  |-  ( A. x x  =  y  ->  E. x ( x  =  u  /\  y  =  u )  )
141:140:  |-  ( A. x x  =  y  ->  A. x E. x ( x  =  u  /\  y  =  u ) )
15:1,141:  |-  (. A. x x  =  y  ->.  A. x E. x ( x  =  u  /\  y  =  u ) ).
16:1,15:  |-  (. A. x x  =  y  ->.  A. y E. x ( x  =  u  /\  y  =  u ) ).
17:16:  |-  (. A. x x  =  y  ->.  E. y E. x ( x  =  u  /\  y  =  u ) ).
18:17:  |-  (. A. x x  =  y  ->.  E. x E. y ( x  =  u  /\  y  =  u ) ).
19::  |-  (. u  =  v  ->.  u  =  v ).
20::  |-  (. u  =  v ,. ( x  =  u  /\  y  =  u )  ->.  ( x  =  u  /\  y  =  u ) ).
21:20:  |-  (. u  =  v ,. ( x  =  u  /\  y  =  u )  ->.  y  =  u  ).
22:19,21:  |-  (. u  =  v ,. ( x  =  u  /\  y  =  u )  ->.  y  =  v  ).
23:20:  |-  (. u  =  v ,. ( x  =  u  /\  y  =  u )  ->.  x  =  u  ).
24:22,23:  |-  (. u  =  v ,. ( x  =  u  /\  y  =  u )  ->.  ( x  =  u  /\  y  =  v ) ).
25:24:  |-  (. u  =  v  ->.  ( ( x  =  u  /\  y  =  u )  ->  (  x  =  u  /\  y  =  v ) ) ).
26:25:  |-  (. u  =  v  ->.  A. y ( ( x  =  u  /\  y  =  u )  ->  ( x  =  u  /\  y  =  v ) ) ).
27:26:  |-  (. u  =  v  ->.  ( E. y ( x  =  u  /\  y  =  u )  ->  E. y ( x  =  u  /\  y  =  v ) ) ).
28:27:  |-  (. u  =  v  ->.  A. x ( E. y ( x  =  u  /\  y  =  u )  ->  E. y ( x  =  u  /\  y  =  v ) ) ).
29:28:  |-  (. u  =  v  ->.  ( E. x E. y ( x  =  u  /\  y  =  u )  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) ).
30:29:  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  u  )  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )
31:18,30:  |-  (. A. x x  =  y  ->.  ( u  =  v  ->  E. x E. y  ( x  =  u  /\  y  =  v ) ) ).
qed:31:  |-  ( A. x x  =  y  ->  ( u  =  v  ->  E. x E. y (  x  =  u  /\  y  =  v ) ) )
 |-  ( A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )
 
Theorema9e2ndVD 29020* The following User's Proof is a Virtual Deduction proof (see: wvd1 28660) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. a9e2eq 28644 is a9e2ndVD 29020 without virtual deductions and was automatically derived from a9e2ndVD 29020. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  E. y y  =  v
2::  |-  u  e.  _V
3:1,2:  |-  ( u  e.  _V  /\  E. y y  =  v )
4:3:  |-  E. y ( u  e.  _V  /\  y  =  v )
5::  |-  ( u  e.  _V  <->  E. x x  =  u )
6:5:  |-  ( ( u  e.  _V  /\  y  =  v )  <->  ( E. x x  =  u  /\  y  =  v ) )
7:6:  |-  ( E. y ( u  e.  _V  /\  y  =  v )  <->  E. y  ( E. x x  =  u  /\  y  =  v ) )
8:4,7:  |-  E. y ( E. x x  =  u  /\  y  =  v )
9::  |-  ( z  =  v  ->  A. x z  =  v )
10::  |-  ( y  =  v  ->  A. z y  =  v )
11::  |-  (. z  =  y  ->.  z  =  y ).
12:11:  |-  (. z  =  y  ->.  ( z  =  v  <->  y  =  v ) ).
120:11:  |-  ( z  =  y  ->  ( z  =  v  <->  y  =  v ) )
13:9,10,120:  |-  ( -.  A. x x  =  y  ->  ( y  =  v  ->  A. x y  =  v ) )
14::  |-  (. -.  A. x x  =  y  ->.  -.  A. x x  =  y ).
15:14,13:  |-  (. -.  A. x x  =  y  ->.  ( y  =  v  ->  A. x  y  =  v ) ).
16:15:  |-  ( -.  A. x x  =  y  ->  ( y  =  v  ->  A. x y  =  v ) )
17:16:  |-  ( A. x -.  A. x x  =  y  ->  A. x ( y  =  v  ->  A. x y  =  v ) )
18::  |-  ( -.  A. x x  =  y  ->  A. x -.  A. x x  =  y  )
19:17,18:  |-  ( -.  A. x x  =  y  ->  A. x ( y  =  v  ->  A.  x y  =  v ) )
20:14,19:  |-  (. -.  A. x x  =  y  ->.  A. x ( y  =  v  ->  A. x y  =  v ) ).
21:20:  |-  (. -.  A. x x  =  y  ->.  ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) ).
22:21:  |-  ( -.  A. x x  =  y  ->  ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
23:22:  |-  ( A. y -.  A. x x  =  y  ->  A. y ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
24::  |-  ( -.  A. x x  =  y  ->  A. y -.  A. x x  =  y  )
25:23,24:  |-  ( -.  A. x x  =  y  ->  A. y ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
26:14,25:  |-  (. -.  A. x x  =  y  ->.  A. y ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) ).
27:26:  |-  (. -.  A. x x  =  y  ->.  ( E. y ( E. x x  =  u  /\  y  =  v )  ->  E. y E. x ( x  =  u  /\  y  =  v ) ) ).
28:8,27:  |-  (. -.  A. x x  =  y  ->.  E. y E. x ( x  =  u  /\  y  =  v ) ).
29:28:  |-  (. -.  A. x x  =  y  ->.  E. x E. y ( x  =  u  /\  y  =  v ) ).
qed:29:  |-  ( -.  A. x x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
 |-  ( -.  A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
 
Theorema9e2ndeqVD 29021* The following User's Proof is a Virtual Deduction proof (see: wvd1 28660) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. a9e2eq 28644 is a9e2ndeqVD 29021 without virtual deductions and was automatically derived from a9e2ndeqVD 29021. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. u  =/=  v  ->.  u  =/=  v ).
2::  |-  (. u  =/=  v ,. ( x  =  u  /\  y  =  v )  ->.  (  x  =  u  /\  y  =  v ) ).
3:2:  |-  (. u  =/=  v ,. ( x  =  u  /\  y  =  v )  ->.  x  =  u ).
4:1,3:  |-  (. u  =/=  v ,. ( x  =  u  /\  y  =  v )  ->.  x  =/=  v ).
5:2:  |-  (. u  =/=  v ,. ( x  =  u  /\  y  =  v )  ->.  y  =  v ).
6:4,5:  |-  (. u  =/=  v ,. ( x  =  u  /\  y  =  v )  ->.  x  =/=  y ).
7::  |-  ( A. x x  =  y  ->  x  =  y )
8:7:  |-  ( -.  x  =  y  ->  -.  A. x x  =  y )
9::  |-  ( -.  x  =  y  <->  x  =/=  y )
10:8,9:  |-  ( x  =/=  y  ->  -.  A. x x  =  y )
11:6,10:  |-  (. u  =/=  v ,. ( x  =  u  /\  y  =  v )  ->.  -.  A. x x  =  y ).
12:11:  |-  (. u  =/=  v  ->.  ( ( x  =  u  /\  y  =  v )  ->  -.  A. x x  =  y ) ).
13:12:  |-  (. u  =/=  v  ->.  A. x ( ( x  =  u  /\  y  =  v )  ->  -.  A. x x  =  y ) ).
14:13:  |-  (. u  =/=  v  ->.  ( E. x ( x  =  u  /\  y  =  v )  ->  E. x -.  A. x x  =  y ) ).
15::  |-  ( -.  A. x x  =  y  ->  A. x -.  A. x x  =  y  )
19:15:  |-  ( E. x -.  A. x x  =  y  <->  -.  A. x x  =  y )
20:14,19:  |-  (. u  =/=  v  ->.  ( E. x ( x  =  u  /\  y  =  v )  ->  -.  A. x x  =  y ) ).
21:20:  |-  (. u  =/=  v  ->.  A. y ( E. x ( x  =  u  /\  y  =  v )  ->  -.  A. x x  =  y ) ).
22:21:  |-  (. u  =/=  v  ->.  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. y -.  A. x x  =  y ) ).
23::  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  <->  E.  y E. x ( x  =  u  /\  y  =  v ) )
24:22,23:  |-  (. u  =/=  v  ->.  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  E. y -.  A. x x  =  y ) ).
25::  |-  ( -.  A. x x  =  y  ->  A. y -.  A. x x  =  y  )
26:25:  |-  ( E. y -.  A. x x  =  y  ->  E. y A. y -.  A. x x  =  y )
260::  |-  ( A. y -.  A. x x  =  y  ->  A. y A. y -.  A. x x  =  y )
27:260:  |-  ( E. y A. y -.  A. x x  =  y  <->  A. y -.  A. x x  =  y )
270:26,27:  |-  ( E. y -.  A. x x  =  y  ->  A. y -.  A. x  x  =  y )
28::  |-  ( A. y -.  A. x x  =  y  ->  -.  A. x x  =  y  )
29:270,28:  |-  ( E. y -.  A. x x  =  y  ->  -.  A. x x  =  y  )
30:24,29:  |-  (. u  =/=  v  ->.  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  -.  A. x x  =  y ) ).
31:30:  |-  (. u  =/=  v  ->.  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x x  =  y  \/  u  =  v ) ) ).
32:31:  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x x  =  y  \/  u  =  v ) ) )
33::  |-  (. u  =  v  ->.  u  =  v ).
34:33:  |-  (. u  =  v  ->.  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  u  =  v ) ).
35:34:  |-  (. u  =  v  ->.  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x x  =  y  \/  u  =  v ) ) ).
36:35:  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x x  =  y  \/  u  =  v ) ) )
37::  |-  ( u  =  v  \/  u  =/=  v )
38:32,36,37:  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  (  -.  A. x x  =  y  \/  u  =  v ) )
39::  |-  ( A. x x  =  y  ->  ( u  =  v  ->  E. x E. y  ( x  =  u  /\  y  =  v ) ) )
40::  |-  ( -.  A. x x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
41:40:  |-  ( -.  A. x x  =  y  ->  ( u  =  v  ->  E. x E.  y ( x  =  u  /\  y  =  v ) ) )
42::  |-  ( A. x x  =  y  \/  -.  A. x x  =  y )
43:39,41,42:  |-  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v  ) )
44:40,43:  |-  ( ( -.  A. x x  =  y  \/  u  =  v )  ->  E. x  E. y ( x  =  u  /\  y  =  v ) )
qed:38,44:  |-  ( ( -.  A. x x  =  y  \/  u  =  v )  <->  E. x  E. y ( x  =  u  /\  y  =  v ) )
 |-  (
 ( -.  A. x  x  =  y  \/  u  =  v )  <->  E. x E. y ( x  =  u  /\  y  =  v )
 )
 
Theorem2sb5ndVD 29022* The following User's Proof is a Virtual Deduction proof (see: wvd1 28660) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2sb5nd 28647 is 2sb5ndVD 29022 without virtual deductions and was automatically derived from 2sb5ndVD 29022. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  <->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
2:1:  |-  ( E. y ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) )
3::  |-  ( [ v  /  y ] ph  ->  A. y [ v  /  y ] ph )
4:3:  |-  [ u  /  x ] ( [ v  /  y ] ph  ->  A. y [ v  /  y ] ph )
5:4:  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  [ u  /  x ]  A. y [ v  /  y ] ph )
6::  |-  (. -.  A. x x  =  y  ->.  -.  A. x x  =  y ).
7::  |-  ( A. y y  =  x  ->  A. x x  =  y )
8:7:  |-  ( -.  A. x x  =  y  ->  -.  A. y y  =  x )
9:6,8:  |-  (. -.  A. x x  =  y  ->.  -.  A. y y  =  x ).
10:9:  |-  ( [ u  /  x ] A. y [ v  /  y ] ph  <->  A.  y [ u  /  x ] [ v  /  y ] ph )
11:5,10:  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph )
12:11:  |-  ( -.  A. x x  =  y  ->  ( [ u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )
13::  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  A. x [ u  /  x ] [ v  /  y ] ph )
14::  |-  (. A. x x  =  y  ->.  A. x x  =  y ).
15:14:  |-  (. A. x x  =  y  ->.  ( A. x [ u  /  x ] [  v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) ).
16:13,15:  |-  (. A. x x  =  y  ->.  ( [ u  /  x ] [ v  /  y  ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) ).
17:16:  |-  ( A. x x  =  y  ->  ( [ u  /  x ] [ v  /  y ]  ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )
19:12,17:  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph )
20:19:  |-  ( E. y ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  ( E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
21:2,20:  |-  ( E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  <->  ( E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
22:21:  |-  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  <->  E. x ( E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
23:13:  |-  ( E. x ( E. y ( x  =  u  /\  y  =  v )  /\  [  u  /  x ] [ v  /  y ] ph )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
24:22,23:  |-  ( ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [  u  /  x ] [ v  /  y ] ph )  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) )
240:24:  |-  ( ( E. x E. y ( x  =  u  /\  y  =  v )  /\  (  E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
241::  |-  ( ( E. x E. y ( x  =  u  /\  y  =  v )  /\  (  E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
242:241,240:  |-  ( ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [  u  /  x ] [ v  /  y ] ph )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
243::  |-  ( ( E. x E. y ( x  =  u  /\  y  =  v )  ->  (  [ u  /  x ] [ v  /  y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )  <->  ( ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) ) )
25:242,243:  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( [  u  /  x ] [ v  /  y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
26::  |-  ( ( -.  A. x x  =  y  \/  u  =  v )  <->  E. x  E. y ( x  =  u  /\  y  =  v ) )
qed:25,26:  |-  ( ( -.  A. x x  =  y  \/  u  =  v )  ->  ( [ u  /  x ] [ v  /  y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
 |-  (
 ( -.  A. x  x  =  y  \/  u  =  v )  ->  ( [ u  /  x ] [ v  /  y ] ph  <->  E. x E. y
 ( ( x  =  u  /\  y  =  v )  /\  ph )
 ) )
 
Theorem2uasbanhVD 29023* The following User's Proof is a Virtual Deduction proof (see: wvd1 28660) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh 28648 is 2uasbanhVD 29023 without virtual deductions and was automatically derived from 2uasbanhVD 29023. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
h1::  |-  ( ch  <->  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) ) )
100:1:  |-  ( ch  ->  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) ) )
2:100:  |-  (. ch  ->.  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) ) ).
3:2:  |-  (. ch  ->.  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ).
4:3:  |-  (. ch  ->.  E. x E. y ( x  =  u  /\  y  =  v  ) ).
5:4:  |-  (. ch  ->.  ( -.  A. x x  =  y  \/  u  =  v )  ).
6:5:  |-  (. ch  ->.  ( [ u  /  x ] [ v  /  y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) ).
7:3,6:  |-  (. ch  ->.  [ u  /  x ] [ v  /  y ]