HomeHome Metamath Proof Explorer
Theorem List (p. 304 of 322)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21498)
  Hilbert Space Explorer  Hilbert Space Explorer
(21499-23021)
  Users' Mathboxes  Users' Mathboxes
(23022-32154)
 

Theorem List for Metamath Proof Explorer - 30301-30400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremldil1o 30301 A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D ) 
 ->  F : B -1-1-onto-> B )
 
Theoremldilval 30302 Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( F `  X )  =  X )
 
Theoremidldil 30303 The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( K  e.  A  /\  W  e.  H )  ->  (  _I  |`  B )  e.  D )
 
Theoremldilcnv 30304 The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D ) 
 ->  `' F  e.  D )
 
Theoremldilco 30305 The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  ->  ( F  o.  G )  e.  D )
 
Theoremltrnfset 30306* The set of all lattice translations for a lattice  K. (Contributed by NM, 11-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  C  ->  (
 LTrn `  K )  =  ( w  e.  H  |->  { f  e.  ( (
 LDil `  K ) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p  .\/  ( f `  p ) )  ./\  w )  =  ( ( q 
 .\/  ( f `  q ) )  ./\  w ) ) } )
 )
 
Theoremltrnset 30307* The set of lattice translations for a fiducial co-atom  W. (Contributed by NM, 11-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( K  e.  B  /\  W  e.  H )  ->  T  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W 
 /\  -.  q  .<_  W )  ->  ( ( p  .\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `  q ) )  ./\  W ) ) } )
 
Theoremisltrn 30308* The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
 ) ) ) )
 
Theoremisltrn2N 30309* The predicate "is a lattice translation". Version of isltrn 30308 that considers only different  p and  q. TODO: Can this eliminate some separate proofs for the 
p  =  q case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  ->  (
 ( p  .\/  ( F `  p ) ) 
 ./\  W )  =  ( ( q  .\/  ( F `  q ) ) 
 ./\  W ) ) ) ) )
 
Theoremltrnu 30310 Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom  W. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  V  /\  W  e.  H ) 
 /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `  Q ) )  ./\  W )
 )
 
Theoremltrnldil 30311 A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T ) 
 ->  F  e.  D )
 
Theoremltrnlaut 30312 A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( LAut `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T ) 
 ->  F  e.  I )
 
Theoremltrn1o 30313 A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T ) 
 ->  F : B -1-1-onto-> B )
 
Theoremltrncl 30314 Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  B )  ->  ( F `  X )  e.  B )
 
Theoremltrn11 30315 One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( ( F `  X )  =  ( F `  Y ) 
 <->  X  =  Y ) )
 
Theoremltrncnvnid 30316 If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' F  =/=  (  _I  |`  B ) )
 
TheoremltrncoidN 30317 Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analog of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  ->  ( ( F  o.  `' G )  =  (  _I  |`  B )  <->  F  =  G ) )
 
Theoremltrnle 30318 Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
  Y ) ) )
 
TheoremltrncnvleN 30319 Less-than or equal property of lattice translation converse. (Contributed by NM, 10-May-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( X  .<_  Y  <->  ( `' F `  X )  .<_  ( `' F `  Y ) ) )
 
Theoremltrnm 30320 Lattice translation of a meet. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( F `  ( X  ./\  Y ) )  =  ( ( F `  X ) 
 ./\  ( F `  Y ) ) )
 
Theoremltrnj 30321 Lattice translation of a meet. TODO: change antecedent to  K  e.  HL (Contributed by NM, 25-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( F `  ( X  .\/  Y ) )  =  (
 ( F `  X )  .\/  ( F `  Y ) ) )
 
Theoremltrncvr 30322 Covering property of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  C  =  (  <o  `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( X C Y  <->  ( F `  X ) C ( F `  Y ) ) )
 
Theoremltrnval1 30323 Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( F `  X )  =  X )
 
Theoremltrnid 30324* A lattice translation is the identity function iff all atoms not under the fiducial co-atom  W are equal to their values. (Contributed by NM, 24-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( A. p  e.  A  ( -.  p  .<_  W  ->  ( F `  p )  =  p )  <->  F  =  (  _I  |`  B ) ) )
 
Theoremltrnnid 30325* If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 
W and not equal to its translation. (Contributed by NM, 24-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  ( F `
  p )  =/= 
 p ) )
 
Theoremltrnatb 30326 The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B )  ->  ( P  e.  A  <->  ( F `  P )  e.  A ) )
 
Theoremltrncnvatb 30327 The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B )  ->  ( P  e.  A  <->  ( `' F `  P )  e.  A ) )
 
Theoremltrnel 30328 The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
 
Theoremltrnat 30329 The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 30328 uses. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A )  ->  ( F `  P )  e.  A )
 
Theoremltrncnvat 30330 The converse of the lattice translation of an atom is an atom. (Contributed by NM, 9-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A )  ->  ( `' F `  P )  e.  A )
 
Theoremltrncnvel 30331 The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( `' F `  P )  e.  A  /\  -.  ( `' F `  P ) 
 .<_  W ) )
 
TheoremltrncoelN 30332 Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 30328 uses. (Contributed by NM, 1-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( F `  ( G `  P ) )  e.  A  /\  -.  ( F `  ( G `
  P ) ) 
 .<_  W ) )
 
Theoremltrncoat 30333 Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 30328, ltrnat 30329 uses. (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  P  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )
 
Theoremltrncoval 30334 Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  P  e.  A )  ->  ( ( F  o.  G ) `  P )  =  ( F `  ( G `  P ) ) )
 
Theoremltrncnv 30335 The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  `' F  e.  T )
 
Theoremltrn11at 30336 Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013.)
 |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q ) ) 
 ->  ( F `  P )  =/=  ( F `  Q ) )
 
Theoremltrneq2 30337* The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
 |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  <->  F  =  G ) )
 
Theoremltrneq 30338* The equality of two translations is determined by their equality at atoms not under co-atom  W. (Contributed by NM, 20-Jun-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  ->  ( A. p  e.  A  ( -.  p  .<_  W  ->  ( F `  p )  =  ( G `  p ) )  <->  F  =  G ) )
 
Theoremidltrn 30339 The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
 
Theoremltrnmw 30340 Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  ./\  =  ( meet `  K )   &    |- 
 .0.  =  ( 0. `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  ./\  W )  =  .0.  )
 
TheoremdilfsetN 30341* The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  W  =  ( WAtoms `  K )   &    |-  M  =  ( PAut `  K )   &    |-  L  =  ( Dil `  K )   =>    |-  ( K  e.  B  ->  L  =  ( d  e.  A  |->  { f  e.  M  |  A. x  e.  S  ( x  C_  ( W `  d ) 
 ->  ( f `  x )  =  x ) } ) )
 
TheoremdilsetN 30342* The set of dilations for a fiducial atom  D. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  W  =  ( WAtoms `  K )   &    |-  M  =  ( PAut `  K )   &    |-  L  =  ( Dil `  K )   =>    |-  ( ( K  e.  B  /\  D  e.  A )  ->  ( L `  D )  =  {
 f  e.  M  |  A. x  e.  S  ( x  C_  ( W `
  D )  ->  ( f `  x )  =  x ) } )
 
TheoremisdilN 30343* The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  W  =  ( WAtoms `  K )   &    |-  M  =  ( PAut `  K )   &    |-  L  =  ( Dil `  K )   =>    |-  ( ( K  e.  B  /\  D  e.  A )  ->  ( F  e.  ( L `  D )  <-> 
 ( F  e.  M  /\  A. x  e.  S  ( x  C_  ( W `
  D )  ->  ( F `  x )  =  x ) ) ) )
 
TheoremtrnfsetN 30344* The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   &    |- 
 ._|_  =  ( _|_ P `
  K )   &    |-  W  =  ( WAtoms `  K )   &    |-  M  =  ( PAut `  K )   &    |-  L  =  ( Dil `  K )   &    |-  T  =  ( Trn `  K )   =>    |-  ( K  e.  C  ->  T  =  ( d  e.  A  |->  { f  e.  ( L `  d
 )  |  A. q  e.  ( W `  d
 ) A. r  e.  ( W `  d ) ( ( q  .+  (
 f `  q )
 )  i^i  (  ._|_  ` 
 { d } )
 )  =  ( ( r  .+  ( f `
  r ) )  i^i  (  ._|_  `  { d } ) ) }
 ) )
 
TheoremtrnsetN 30345* The set of translations for a fiducial atom  D. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   &    |- 
 ._|_  =  ( _|_ P `
  K )   &    |-  W  =  ( WAtoms `  K )   &    |-  M  =  ( PAut `  K )   &    |-  L  =  ( Dil `  K )   &    |-  T  =  ( Trn `  K )   =>    |-  ( ( K  e.  B  /\  D  e.  A )  ->  ( T `  D )  =  {
 f  e.  ( L `
  D )  | 
 A. q  e.  ( W `  D ) A. r  e.  ( W `  D ) ( ( q  .+  ( f `
  q ) )  i^i  (  ._|_  `  { D } ) )  =  ( ( r  .+  ( f `  r
 ) )  i^i  (  ._|_  `  { D }
 ) ) } )
 
TheoremistrnN 30346* The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   &    |- 
 ._|_  =  ( _|_ P `
  K )   &    |-  W  =  ( WAtoms `  K )   &    |-  M  =  ( PAut `  K )   &    |-  L  =  ( Dil `  K )   &    |-  T  =  ( Trn `  K )   =>    |-  ( ( K  e.  B  /\  D  e.  A )  ->  ( F  e.  ( T `  D )  <-> 
 ( F  e.  ( L `  D )  /\  A. q  e.  ( W `
  D ) A. r  e.  ( W `  D ) ( ( q  .+  ( F `
  q ) )  i^i  (  ._|_  `  { D } ) )  =  ( ( r  .+  ( F `  r ) )  i^i  (  ._|_  ` 
 { D } )
 ) ) ) )
 
Syntaxctrl 30347 Extend class notation with set of all traces of lattice translations.
 class  trL
 
Definitiondf-trl 30348* Define trace of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  trL  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( f  e.  ( (
 LTrn `  k ) `  w )  |->  ( iota_ x  e.  ( Base `  k
 ) A. p  e.  ( Atoms `  k ) ( -.  p ( le `  k ) w  ->  x  =  ( ( p ( join `  k
 ) ( f `  p ) ) (
 meet `  k ) w ) ) ) ) ) )
 
Theoremtrlfset 30349* The set of all traces of lattice translations for a lattice  K. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  C  ->  ( trL `  K )  =  ( w  e.  H  |->  ( f  e.  (
 ( LTrn `  K ) `  w )  |->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  ( f `  p ) )  ./\  w ) ) ) ) ) )
 
Theoremtrlset 30350* The set of traces of lattice translations for a fiducial co-atom  W. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( K  e.  C  /\  W  e.  H )  ->  R  =  ( f  e.  T  |->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p 
 .\/  ( f `  p ) )  ./\  W ) ) ) ) )
 
Theoremtrlval 30351* The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  F )  =  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p ) )  ./\  W )
 ) ) )
 
Theoremtrlval2 30352 The value of the trace of a lattice translation, given any atom  P not under the fiducial co-atom  W. Note: this requires only the weaker assumption  K  e.  Lat; we use  K  e.  HL for convenience. (Contributed by NM, 20-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P ) ) 
 ./\  W ) )
 
Theoremtrlcl 30353 Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  F )  e.  B )
 
Theoremtrlcnv 30354 The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  `' F )  =  ( R `  F ) )
 
Theoremtrljat1 30355 The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. Todo: shorten with atmod3i1 30053? (Contributed by NM, 22-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F ) )  =  ( P  .\/  ( F `  P ) ) )
 
Theoremtrljat2 30356 The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F ) )  =  ( P 
 .\/  ( F `  P ) ) )
 
Theoremtrljat3 30357 The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F ) )  =  (
 ( F `  P )  .\/  ( R `  F ) ) )
 
Theoremtrlat 30358 If an atom differs from its translation, the trace is an atom. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A )
 
Theoremtrl0 30359 If an atom not under the fiducial co-atom  W equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .0.  =  ( 0. `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `
  F )  =  .0.  )
 
Theoremtrlator0 30360 The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.)
 |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( ( R `  F )  e.  A  \/  ( R `  F )  =  .0.  )
 )
 
Theoremtrlatn0 30361 The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.)
 |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( ( R `  F )  e.  A  <->  ( R `  F )  =/=  .0.  ) )
 
Theoremtrlnidat 30362 The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A )
 
Theoremltrnnidn 30363 If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom  W is different from the atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 24-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  =/=  P )
 
Theoremltrnideq 30364 Property of the identity lattice translation. (Contributed by NM, 27-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F  =  (  _I  |`  B )  <-> 
 ( F `  P )  =  P )
 )
 
Theoremtrlid0 30365 The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( R `  (  _I  |`  B ) )  =  .0.  )
 
Theoremtrlnidatb 30366 A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 30362? Why do both this and ltrnideq 30364 need trlnidat 30362? (Contributed by NM, 4-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( F  =/=  (  _I  |`  B )  <->  ( R `  F )  e.  A ) )
 
Theoremtrlid0b 30367 A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( F  =  (  _I  |`  B )  <->  ( R `  F )  =  .0.  ) )
 
Theoremtrlnid 30368 Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( F  =/=  G 
 /\  ( R `  F )  =  ( R `  G ) ) )  ->  F  =/=  (  _I  |`  B )
 )
 
Theoremltrn2ateq 30369 Property of the equality of a lattice translation with its value. (Contributed by NM, 27-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( F `  P )  =  P  <->  ( F `  Q )  =  Q ) )
 
Theoremltrnateq 30370 If any atom (under  W) is not equal to its translation, so is any other atom. (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( F `  Q )  =  Q )
 
Theoremltrnatneq 30371 If any atom (under  W) is not equal to its translation, so is any other atom. TODO:  -.  P  .<_  W isn't needed to prove this. Will removing it shorten (and not lengthen) proofs using it? (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `  P )  =/= 
 P )  ->  ( F `  Q )  =/= 
 Q )
 
Theoremltrnatlw 30372 If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  Q  e.  A )  /\  ( ( F `
  P )  =/= 
 P  /\  ( F `  Q )  =  Q ) )  ->  Q  .<_  W )
 
Theoremtrlle 30373 The trace of a lattice translation is less than the fiducial co-atom  W.. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  F )  .<_  W )
 
Theoremtrlne 30374 The trace of a lattice translation is not equal to any atom not under the fiducial co-atom  W. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  ( R `  F ) )
 
Theoremtrlnle 30375 The atom not under the fiducial co-atom  W is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  ( R `  F ) )
 
Theoremtrlval3 30376 The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `
  P ) )  =/=  ( Q  .\/  ( F `  Q ) ) ) )  ->  ( R `  F )  =  ( ( P 
 .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
  Q ) ) ) )
 
Theoremtrlval4 30377 The value of the trace of a lattice translation in terms of 2 atoms. (Contributed by NM, 3-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  ( R `  F ) 
 .<_  ( P  .\/  Q ) ) )  ->  ( R `  F )  =  ( ( P 
 .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
  Q ) ) ) )
 
Theoremtrlval5 30378 The value of the trace of a lattice translation in terms of itself. (Contributed by NM, 19-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( R `  F ) ) 
 ./\  W ) )
 
Theoremarglem1N 30379 Lemma for Desargues' law. Theorem 13.3 of [Crawley] p. 110, 3rd and 4th lines from bottom. In these lemmas,  P,  Q,  R,  S,  T,  U,  C,  D,  E,  F, and  G represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
 |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  F  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  G  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )   =>    |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T ) )  /\  G  e.  A )  ->  F  e.  A )
 
Theoremcdlemc1 30380 Part of proof of Lemma C in [Crawley] p. 112. TODO: shorten with atmod3i1 30053? (Contributed by NM, 29-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( ( P  .\/  X )  ./\  W )
 )  =  ( P 
 .\/  X ) )
 
Theoremcdlemc2 30381 Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P ) 
 .\/  ( ( P 
 .\/  Q )  ./\  W ) ) )
 
Theoremcdlemc3 30382 Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( F `  P )  .<_  ( Q 
 .\/  ( R `  F ) )  ->  Q  .<_  ( P  .\/  ( F `  P ) ) ) )
 
Theoremcdlemc4 30383 Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  ->  ( Q  .\/  ( R `  F ) )  =/=  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\ 
 W ) ) )
 
Theoremcdlemc5 30384 Lemma for cdlemc 30386. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( -.  Q  .<_  ( P  .\/  ( F `  P ) )  /\  ( F `
  P )  =/= 
 P ) )  ->  ( F `  Q )  =  ( ( Q 
 .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\ 
 W ) ) ) )
 
Theoremcdlemc6 30385 Lemma for cdlemc 30386. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( F `  Q )  =  ( ( Q  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
 ) ) )
 
Theoremcdlemc 30386 Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  ->  ( F `  Q )  =  ( ( Q  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
 ) ) )
 
Theoremcdlemd1 30387 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) )  ->  R  =  ( ( P  .\/  ( ( P  .\/  R )  ./\  W )
 )  ./\  ( Q  .\/  ( ( Q  .\/  R )  ./\  W )
 ) ) )
 
Theoremcdlemd2 30388 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( P  =/=  Q 
 /\  -.  R  .<_  ( P  .\/  Q )
 ) )  /\  (
 ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd3 30389 Part of proof of Lemma D in [Crawley] p. 113. The  R  =/=  P requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( P  =/=  Q 
 /\  R  .<_  ( P 
 .\/  Q )  /\  R  =/=  P ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  S ) )
 
Theoremcdlemd4 30390 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( P  =/=  Q 
 /\  R  .<_  ( P 
 .\/  Q )  /\  R  =/=  P ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) ) 
 ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd5 30391 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  P  =/=  Q )  /\  ( ( F `
  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd6 30392 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) ) 
 /\  ( F `  P )  =  ( G `  P ) ) 
 ->  ( F `  Q )  =  ( G `  Q ) )
 
Theoremcdlemd7 30393 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd8 30394 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `
  P )  =  P ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd9 30395 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `
  P )  =  ( G `  P ) )  ->  ( F `
  R )  =  ( G `  R ) )
 
Theoremcdlemd 30396 If two translations agree at any atom not under the fiducial co-atom  W, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `
  P )  =  ( G `  P ) )  ->  F  =  G )
 
Theoremltrneq3 30397 Two translations agree at any atom not under the fiducial co-atom  W iff they are equal. (Contributed by NM, 25-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( F `  P )  =  ( G `  P )  <->  F  =  G ) )
 
Theoremcdleme00a 30398 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  -.  R  .<_  ( P 
 .\/  Q ) )  ->  R  =/=  P )
 
Theoremcdleme0aa 30399 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  B  =  ( Base `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A ) 
 ->  U  e.  B )
 
Theoremcdleme0a 30400 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32154
  Copyright terms: Public domain < Previous  Next >