HomeHome Metamath Proof Explorer
Theorem List (p. 307 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21514)
  Hilbert Space Explorer  Hilbert Space Explorer
(21515-23037)
  Users' Mathboxes  Users' Mathboxes
(23038-32776)
 

Theorem List for Metamath Proof Explorer - 30601-30700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2llnma2rN 30601 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  R )  ./\  ( Q  .\/  R ) )  =  R )
 
18.27.11  Construction of a vector space from a Hilbert lattice
 
Theoremcdlema1N 30602 A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  F  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q ) )  /\  ( P 
 .<_  X  /\  Q  .<_  Y )  /\  ( ( F `  Y )  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) ) 
 ->  ( X  .\/  R )  =  ( X  .\/  Y ) )
 
Theoremcdlema2N 30603 A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( ( R  =/=  P 
 /\  R  .<_  ( P 
 .\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  ( R  ./\ 
 X )  =  .0.  )
 
Theoremcdlemblem 30604 Lemma for cdlemb 30605. (Contributed by NM, 8-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .<  =  ( lt `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  V  =  ( ( P  .\/  Q )  ./\ 
 X )   =>    |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q ) 
 /\  ( X C  .1.  /\  -.  P  .<_  X 
 /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  ( u  =/=  V  /\  u  .<  X ) ) 
 /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u )
 ) ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Theoremcdlemb 30605* Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q ) 
 /\  ( X C  .1.  /\  -.  P  .<_  X 
 /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Syntaxcpadd 30606 Extend class notation with projective subspace sum.
 class  + P
 
Definitiondf-padd 30607* Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.)
 |-  + P  =  ( l  e.  _V  |->  ( m  e. 
 ~P ( Atoms `  l
 ) ,  n  e. 
 ~P ( Atoms `  l
 )  |->  ( ( m  u.  n )  u. 
 { p  e.  ( Atoms `  l )  | 
 E. q  e.  m  E. r  e.  n  p ( le `  l
 ) ( q (
 join `  l ) r ) } ) ) )
 
Theorempaddfval 30608* Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( K  e.  B  ->  .+  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
 
Theorempaddval 30609* Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u. 
 { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } )
 )
 
Theoremelpadd 30610* Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
 ) ) ) ) )
 
Theoremelpaddn0 30611* Member of projective subspace sum of non-empty sets. (Contributed by NM, 3-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) ) 
 ->  ( S  e.  ( X  .+  Y )  <->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q 
 .\/  r ) ) ) )
 
Theorempaddvaln0N 30612* Projective subspace sum operation value for non-empty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) ) 
 ->  ( X  .+  Y )  =  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q 
 .\/  r ) }
 )
 
Theoremelpaddri 30613 Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( Q  e.  X  /\  R  e.  Y )  /\  ( S  e.  A  /\  S  .<_  ( Q 
 .\/  R ) ) ) 
 ->  S  e.  ( X 
 .+  Y ) )
 
TheoremelpaddatriN 30614 Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R  .\/  Q ) ) )  ->  S  e.  ( X  .+ 
 { Q } )
 )
 
Theoremelpaddat 30615* Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  X  =/=  (/) )  ->  ( S  e.  ( X  .+  { Q }
 ) 
 <->  ( S  e.  A  /\  E. p  e.  X  S  .<_  ( p  .\/  Q ) ) ) )
 
TheoremelpaddatiN 30616* Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( X  =/=  (/)  /\  R  e.  ( X 
 .+  { Q } )
 ) )  ->  E. p  e.  X  R  .<_  ( p 
 .\/  Q ) )
 
Theoremelpadd2at 30617 Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  Q  e.  A  /\  R  e.  A )  ->  ( S  e.  ( { Q }  .+  { R } )  <->  ( S  e.  A  /\  S  .<_  ( Q 
 .\/  R ) ) ) )
 
Theoremelpadd2at2 30618 Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A )
 )  ->  ( S  e.  ( { Q }  .+  { R } )  <->  S 
 .<_  ( Q  .\/  R ) ) )
 
TheorempaddunssN 30619 Projective subspace sum includes the set union of its arguments. (Contributed by NM, 12-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  C_  ( X  .+  Y ) )
 
Theoremelpadd0 30620 Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( S  e.  ( X  .+  Y )  <->  ( S  e.  X  \/  S  e.  Y ) ) )
 
Theorempaddval0 30621 Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( X  .+  Y )  =  ( X  u.  Y ) )
 
Theorempadd01 30622 Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A )  ->  ( X  .+  (/) )  =  X )
 
Theorempadd02 30623 Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A )  ->  ( (/)  .+  X )  =  X )
 
Theorempaddcom 30624 Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theorempaddssat 30625 A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
 
Theoremsspadd1 30626 A projective subspace sum is a superset of its first summand. (ssun1 3351 analog.) (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( X  .+  Y ) )
 
Theoremsspadd2 30627 A projective subspace sum is a superset of its second summand. (ssun2 3352 analog.) (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( Y  .+  X ) )
 
Theorempaddss1 30628 Subset law for projective subspace sum. (unss1 3357 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( X  .+  Z )  C_  ( Y  .+  Z ) ) )
 
Theorempaddss2 30629 Subset law for projective subspace sum. (unss2 3359 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( Z  .+  X )  C_  ( Z  .+  Y ) ) )
 
Theorempaddss12 30630 Subset law for projective subspace sum. (unss12 3360 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  ->  ( ( X  C_  Y  /\  Z  C_  W )  ->  ( X  .+  Z )  C_  ( Y 
 .+  W ) ) )
 
Theorempaddasslem1 30631 Lemma for paddass 30649. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( x  e.  A  /\  r  e.  A  /\  y  e.  A )  /\  x  =/=  y
 )  /\  -.  r  .<_  ( x  .\/  y
 ) )  ->  -.  x  .<_  ( r  .\/  y
 ) )
 
Theorempaddasslem2 30632 Lemma for paddass 30649. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x  .\/  y
 )  /\  r  .<_  ( y  .\/  z )
 ) )  ->  z  .<_  ( r  .\/  y
 ) )
 
Theorempaddasslem3 30633* Lemma for paddass 30649. Restate projective space axiom ps-2 30289. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( K  e.  HL  /\  ( x  e.  A  /\  r  e.  A  /\  y  e.  A )  /\  ( p  e.  A  /\  z  e.  A ) )  ->  ( ( ( -.  x  .<_  ( r  .\/  y )  /\  p  =/=  z
 )  /\  ( p  .<_  ( x  .\/  r
 )  /\  z  .<_  ( r  .\/  y )
 ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y )  /\  s  .<_  ( p 
 .\/  z ) ) ) )
 
Theorempaddasslem4 30634* Lemma for paddass 30649. Combine paddasslem1 30631, paddasslem2 30632, and paddasslem3 30633. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x  .\/  y
 ) ) )  /\  ( p  .<_  ( x 
 .\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) 
 ->  E. s  e.  A  ( s  .<_  ( x 
 .\/  y )  /\  s  .<_  ( p  .\/  z ) ) )
 
Theorempaddasslem5 30635 Lemma for paddass 30649. Show  s  =/=  z by contradiction. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  r  e.  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
 .\/  y ) ) )  ->  s  =/=  z )
 
Theorempaddasslem6 30636 Lemma for paddass 30649. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  s  e.  A )  /\  z  e.  A )  /\  ( s  =/=  z  /\  s  .<_  ( p  .\/  z )
 ) )  ->  p  .<_  ( s  .\/  z
 ) )
 
Theorempaddasslem7 30637 Lemma for paddass 30649. Combine paddasslem5 30635 and paddasslem6 30636. (Contributed by NM, 9-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
 )  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
 .\/  y ) ) 
 /\  s  .<_  ( p 
 .\/  z ) ) )  ->  p  .<_  ( s  .\/  z )
 )
 
Theorempaddasslem8 30638 Lemma for paddass 30649. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  s  .<_  ( x  .\/  y
 )  /\  p  .<_  ( s  .\/  z )
 ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem9 30639 Lemma for paddass 30649. Combine paddasslem7 30637 and paddasslem8 30638. (Contributed by NM, 9-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x 
 .\/  y )  /\  r  .<_  ( y  .\/  z ) )  /\  ( s  e.  A  /\  s  .<_  ( x 
 .\/  y )  /\  s  .<_  ( p  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem10 30640 Lemma for paddass 30649. Use paddasslem4 30634 to eliminate  s from paddasslem9 30639. (Contributed by NM, 9-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x 
 .\/  y )  /\  p  .<_  ( x  .\/  r )  /\  r  .<_  ( y  .\/  z )
 ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem11 30641 Lemma for paddass 30649. The case when  p  =  z. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) ) 
 /\  z  e.  Z )  ->  p  e.  (
 ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem12 30642 Lemma for paddass 30649. The case when  x  =  y. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
 .\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem13 30643 Lemma for paddass 30649. The case when  r 
.<_  ( x  .\/  y
). (Unlike the proof in Maeda and Maeda, we don't need  x  =/=  y.) (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A )
 )  /\  ( ( x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
 .\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem14 30644 Lemma for paddass 30649. Remove  p  =/=  z,  x  =/=  y, and  -.  r  .<_  ( x  .\/  y ) from antecedent of paddasslem10 30640, using paddasslem11 30641, paddasslem12 30642, and paddasslem13 30643. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x  .\/  r )  /\  r  .<_  ( y  .\/  z )
 ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem15 30645 Lemma for paddass 30649. Use elpaddn0 30611 to eliminate  y and  z from paddasslem14 30644. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) ) 
 /\  p  .<_  ( x 
 .\/  r ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem16 30646 Lemma for paddass 30649. Use elpaddn0 30611 to eliminate  x and  r from paddasslem15 30645. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  ( X  .+  ( Y 
 .+  Z ) ) 
 C_  ( ( X 
 .+  Y )  .+  Z ) )
 
Theorempaddasslem17 30647 Lemma for paddass 30649. The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  -.  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/= 
 (/) ) ) ) 
 ->  ( X  .+  ( Y  .+  Z ) ) 
 C_  ( ( X 
 .+  Y )  .+  Z ) )
 
Theorempaddasslem18 30648 Lemma for paddass 30649. Combine paddasslem16 30646 and paddasslem17 30647. (Contributed by NM, 12-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y ) 
 .+  Z ) )
 
Theorempaddass 30649 Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be non-empty. (Contributed by NM, 29-Dec-2011.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theorempadd12N 30650 Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
 
Theorempadd4N 30651 Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A )  /\  ( Z  C_  A  /\  W  C_  A ) )  ->  ( ( X  .+  Y ) 
 .+  ( Z  .+  W ) )  =  ( ( X  .+  Z )  .+  ( Y 
 .+  W ) ) )
 
Theorempaddidm 30652 Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
 |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X )  =  X )
 
TheorempaddclN 30653 The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
 |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S ) 
 ->  ( X  .+  Y )  e.  S )
 
Theorempaddssw1 30654 Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( ( X  C_  Z  /\  Y  C_  Z )  ->  ( X  .+  Y )  C_  ( Z  .+  Z ) ) )
 
Theorempaddssw2 30655 Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( ( X  .+  Y )  C_  Z  ->  ( X  C_  Z  /\  Y  C_  Z ) ) )
 
Theorempaddss 30656 Subset law for projective subspace sum. (unss 3362 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  ->  ( ( X  C_  Z  /\  Y  C_  Z )  <->  ( X  .+  Y )  C_  Z ) )
 
Theorempmodlem1 30657* Lemma for pmod1i 30659. (Contributed by NM, 9-Mar-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  (
 q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r ) ) ) 
 ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
 
Theorempmodlem2 30658 Lemma for pmod1i 30659. (Contributed by NM, 9-Mar-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) 
 /\  X  C_  Z )  ->  ( ( X 
 .+  Y )  i^i 
 Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
 
Theorempmod1i 30659 The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  ->  ( X  C_  Z  ->  ( ( X  .+  Y )  i^i 
 Z )  =  ( X  .+  ( Y  i^i  Z ) ) ) )
 
Theorempmod2iN 30660 Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( Z  C_  X  ->  ( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y  .+  Z ) ) ) )
 
TheorempmodN 30661 The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )
 )  ->  ( X  i^i  ( Y  .+  ( X  i^i  Z ) ) )  =  ( ( X  i^i  Y ) 
 .+  ( X  i^i  Z ) ) )
 
Theorempmodl42N 30662 Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
 |-  S  =  ( PSubSp `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S ) )  ->  ( ( ( X 
 .+  Y )  .+  Z )  i^i  ( ( X  .+  Y ) 
 .+  W ) )  =  ( ( X 
 .+  Y )  .+  ( ( X  .+  Z )  i^i  ( Y 
 .+  W ) ) ) )
 
Theorempmapjoin 30663 The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  M  =  ( pmap `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  .+  ( M `
  Y ) ) 
 C_  ( M `  ( X  .\/  Y ) ) )
 
Theorempmapjat1 30664 The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A ) 
 ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `
  X )  .+  ( M `  Q ) ) )
 
Theorempmapjat2 30665 The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A ) 
 ->  ( M `  ( Q  .\/  X ) )  =  ( ( M `
  Q )  .+  ( M `  X ) ) )
 
Theorempmapjlln1 30666 The projective map of the join of a lattice element and a lattice line (expressed as the join  Q  .\/  R of two atoms). (Contributed by NM, 16-Sep-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A ) )  ->  ( M `  ( X  .\/  ( Q  .\/  R ) ) )  =  ( ( M `  X ) 
 .+  ( M `  ( Q  .\/  R ) ) ) )
 
Theoremhlmod1i 30667 A version of the modular law pmod1i 30659 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  F  =  ( pmap `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .<_  Z  /\  ( F `  ( X  .\/  Y ) )  =  ( ( F `  X )  .+  ( F `  Y ) ) ) 
 ->  ( ( X  .\/  Y )  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )
 
Theorematmod1i1 30668 Version of modular law pmod1i 30659 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  P  .<_  Y )  ->  ( P  .\/  ( X 
 ./\  Y ) )  =  ( ( P  .\/  X )  ./\  Y )
 )
 
Theorematmod1i1m 30669 Version of modular law pmod1i 30659 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  P  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) 
 /\  ( X  ./\  P )  .<_  Z )  ->  ( ( X  ./\  P )  .\/  ( Y  ./\ 
 Z ) )  =  ( ( ( X 
 ./\  P )  .\/  Y )  ./\  Z ) )
 
Theorematmod1i2 30670 Version of modular law pmod1i 30659 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y )  ->  ( X  .\/  ( P 
 ./\  Y ) )  =  ( ( X  .\/  P )  ./\  Y )
 )
 
Theoremllnmod1i2 30671 Version of modular law pmod1i 30659 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join  P  .\/  Q). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A )  /\  X  .<_  Y ) 
 ->  ( X  .\/  (
 ( P  .\/  Q )  ./\  Y ) )  =  ( ( X 
 .\/  ( P  .\/  Q ) )  ./\  Y ) )
 
Theorematmod2i1 30672 Version of modular law pmod2iN 30660 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  P  .<_  X )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( X  ./\  ( Y  .\/  P ) ) )
 
Theorematmod2i2 30673 Version of modular law pmod2iN 30660 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  Y  .<_  X )  ->  ( ( X  ./\  P )  .\/  Y )  =  ( X  ./\  ( P  .\/  Y ) ) )
 
Theoremllnmod2i2 30674 Version of modular law pmod1i 30659 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join  P  .\/  Q). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A )  /\  Y  .<_  X ) 
 ->  ( ( X  ./\  ( P  .\/  Q ) )  .\/  Y )  =  ( X  ./\  (
 ( P  .\/  Q )  .\/  Y ) ) )
 
Theorematmod3i1 30675 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  P  .<_  X )  ->  ( P  .\/  ( X 
 ./\  Y ) )  =  ( X  ./\  ( P  .\/  Y ) ) )
 
Theorematmod3i2 30676 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y )  ->  ( X  .\/  ( Y 
 ./\  P ) )  =  ( Y  ./\  ( X  .\/  P ) ) )
 
Theorematmod4i1 30677 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  P  .<_  Y )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( ( X  .\/  P )  ./\  Y )
 )
 
Theorematmod4i2 30678 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y )  ->  ( ( P  ./\  Y )  .\/  X )  =  ( ( P  .\/  X )  ./\  Y )
 )
 
Theoremllnexchb2lem 30679 Lemma for llnexchb2 30680. (Contributed by NM, 17-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( LLines `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X ) 
 /\  ( X  ./\  Y )  e.  A ) 
 ->  ( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <->  ( X  ./\  Y )  =  ( X 
 ./\  ( P  .\/  Q ) ) ) )
 
Theoremllnexchb2 30680 Line exchange property (compare cvlatexchb2 30147 for atoms). (Contributed by NM, 17-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( LLines `  K )   =>    |-  (
 ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/=  Z ) ) 
 ->  ( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\  Y )  =  ( X 
 ./\  Z ) ) )
 
Theoremllnexch2N 30681 Line exchange property (compare cvlatexch2 30149 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( LLines `  K )   =>    |-  (
 ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/=  Z ) ) 
 ->  ( ( X  ./\  Y )  .<_  Z  ->  ( X  ./\  Z )  .<_  Y ) )
 
Theoremdalawlem1 30682 Lemma for dalaw 30697. Special case of dath2 30548, where  C is replaced by  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) ). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 30548. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  O  =  ( LPlanes `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R 
 .\/  P ) )  /\  ( -.  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T 
 .\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S )
 )  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem2 30683 Lemma for dalaw 30697. Utility lemma that breaks  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) ) into a join of two pieces. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A ) 
 /\  ( S  e.  A  /\  T  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q )  .\/  T )  ./\ 
 S )  .\/  (
 ( ( P  .\/  Q )  .\/  S )  ./\ 
 T ) ) )
 
Theoremdalawlem3 30684 Lemma for dalaw 30697. First piece of dalawlem5 30686. (Contributed by NM, 4-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( P  .\/  Q )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( ( Q 
 .\/  T )  .\/  P )  ./\  S )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem4 30685 Lemma for dalaw 30697. Second piece of dalawlem5 30686. (Contributed by NM, 4-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( P  .\/  Q )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( ( P 
 .\/  S )  .\/  Q )  ./\  T )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem5 30686 Lemma for dalaw 30697. Special case to eliminate the requirement  -.  ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q ) in dalawlem1 30682. (Contributed by NM, 4-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( P  .\/  Q )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem6 30687 Lemma for dalaw 30697. First piece of dalawlem8 30689. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( Q  .\/  R )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( ( P 
 .\/  Q )  .\/  T )  ./\  S )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem7 30688 Lemma for dalaw 30697. Second piece of dalawlem8 30689. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( Q  .\/  R )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( ( P 
 .\/  Q )  .\/  S )  ./\  T )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem8 30689 Lemma for dalaw 30697. Special case to eliminate the requirement  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R ) in dalawlem1 30682. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( Q  .\/  R )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem9 30690 Lemma for dalaw 30697. Special case to eliminate the requirement  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) in dalawlem1 30682. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  P )  /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem10 30691 Lemma for dalaw 30697. Combine dalawlem5 30686, dalawlem8 30689, and dalawlem9 . (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  -.  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R 
 .\/  P ) )  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem11 30692 Lemma for dalaw 30697. First part of dalawlem13 30694. (Contributed by NM, 17-Sep-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  P  .<_  ( Q 
 .\/  R )  /\  (
 ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R 
 .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
 )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem12 30693 Lemma for dalaw 30697. Second part of dalawlem13 30694. (Contributed by NM, 17-Sep-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( ( K  e.  HL  /\  Q  =  R  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem13 30694 Lemma for dalaw 30697. Special case to eliminate the requirement  ( ( P  .\/  Q )  .\/  R )  e.  O in dalawlem1 30682. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  O  =  ( LPlanes `  K )   =>    |-  (
 ( ( K  e.  HL  /\  -.  ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem14 30695 Lemma for dalaw 30697. Combine dalawlem10 30691 and dalawlem13 30694. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  O  =  ( LPlanes `  K )   =>    |-  (
 ( ( K  e.  HL  /\  -.  ( ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R 
 .\/  P ) ) ) 
 /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalawlem15 30696 Lemma for dalaw 30697. Swap variable triples  P Q R and  S T U in dalawlem14 30695, to obtain the elimination of the remaining conditions in dalawlem1 30682. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  O  =  ( LPlanes `  K )   =>    |-  (
 ( ( K  e.  HL  /\  -.  ( ( ( S  .\/  T )  .\/  U )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U 
 .\/  S ) ) ) 
 /\  ( ( P 
 .\/  S )  ./\  ( Q  .\/  T ) ) 
 .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
 
Theoremdalaw 30697 Desargues' law, derived from Desargues' theorem dath 30547 and with no conditions on the atoms. If triples  <. P ,  Q ,  R >. and  <. S ,  T ,  U >. are centrally perspective, i.e.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
 )  ->  ( (
 ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R 
 .\/  U )  ->  (
 ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .\/  (
 ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) )
 
SyntaxcpclN 30698 Extend class notation with projective subspace closure.
 class  PCl
 
Definitiondf-pclN 30699* Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in  PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces  PSubCl of df-psubclN 30746.) (Contributed by NM, 7-Sep-2013.)
 |-  PCl  =  ( k  e.  _V  |->  ( x  e.  ~P ( Atoms `  k )  |-> 
 |^| { y  e.  ( PSubSp `
  k )  |  x  C_  y }
 ) )
 
TheorempclfvalN 30700* The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  U  =  ( PCl `  K )   =>    |-  ( K  e.  V  ->  U  =  ( x  e.  ~P A  |->  |^| { y  e.  S  |  x  C_  y } )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32776
  Copyright terms: Public domain < Previous  Next >