HomeHome Metamath Proof Explorer
Theorem List (p. 311 of 322)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21498)
  Hilbert Space Explorer  Hilbert Space Explorer
(21499-23021)
  Users' Mathboxes  Users' Mathboxes
(23022-32154)
 

Theorem List for Metamath Proof Explorer - 31001-31100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremerngplus2-rN 31001 Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  D  =  ( ( EDRing R `  K ) `  W )   &    |- 
 .+  =  ( +g  `  D )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T )
 )  ->  ( ( U  .+  V ) `  F )  =  (
 ( U `  F )  o.  ( V `  F ) ) )
 
Theoremerngfmul-rN 31002* Ring multiplication operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  D  =  ( ( EDRing R `  K ) `  W )   &    |- 
 .x.  =  ( .r `  D )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  .x.  =  (
 s  e.  E ,  t  e.  E  |->  ( t  o.  s ) ) )
 
Theoremerngmul-rN 31003 Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  D  =  ( ( EDRing R `  K ) `  W )   &    |- 
 .x.  =  ( .r `  D )   =>    |-  ( ( ( K  e.  X  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )
 )  ->  ( U  .x.  V )  =  ( V  o.  U ) )
 
Theoremcdlemh1 31004 Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P  .\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) ) 
 ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
 
Theoremcdlemh2 31005 Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )   &    |-  .0.  =  ( 0. `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  ./\  W )  =  .0.  )
 
Theoremcdlemh 31006 Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  Q  .<_  ( P 
 .\/  ( R `  F ) ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
 
Theoremcdlemi1 31007 Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( U `  G ) `  P )  .<_  ( P  .\/  ( R `  G ) ) )
 
Theoremcdlemi2 31008 Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  F ) `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
 
Theoremcdlemi 31009 Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( (
 ( U `  F ) `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( U  e.  E  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) ) 
 ->  ( ( U `  G ) `  P )  =  S )
 
Theoremcdlemj1 31010 Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T ) )  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `  F )  =/=  ( R `  g )  /\  ( R `
  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) ) 
 ->  ( ( U `  h ) `  p )  =  ( ( V `  h ) `  p ) )
 
Theoremcdlemj2 31011 Part of proof of Lemma J of [Crawley] p. 118. Eliminate  p. (Contributed by NM, 20-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T ) )  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `  F )  =/=  ( R `  g )  /\  ( R `
  g )  =/=  ( R `  h ) ) )  ->  ( U `  h )  =  ( V `  h ) )
 
Theoremcdlemj3 31012 Part of proof of Lemma J of [Crawley] p. 118. Eliminate  g. (Contributed by NM, 20-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T ) )  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
 
Theoremtendocan 31013 Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of [Crawley] p. 118. (Contributed by NM, 21-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) ) 
 ->  U  =  V )
 
Theoremtendoid0 31014* A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  (
 ( U `  F )  =  (  _I  |`  B )  <->  U  =  O ) )
 
Theoremtendo0mul 31015* Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  ->  ( O  o.  U )  =  O )
 
Theoremtendo0mulr 31016* Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  ->  ( U  o.  O )  =  O )
 
Theoremtendo1ne0 31017* The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  O )
 
Theoremtendoconid 31018* The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O ) )  ->  ( U  o.  V )  =/=  O )
 
Theoremtendotr 31019* The trace of the value of a non-zero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  =  ( R `  F ) )
 
Theoremcdlemk1 31020 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T ) 
 /\  ( ( R `
  F )  =  ( R `  N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( N `
  P ) )  =  ( ( F `
  P )  .\/  ( R `  F ) ) )
 
Theoremcdlemk2 31021 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( G `  P )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( F `  P )  .\/  ( R `
  ( G  o.  `' F ) ) ) )
 
Theoremcdlemk3 31022 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( R `
  G )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  (
 ( ( F `  P )  .\/  ( R `
  F ) ) 
 ./\  ( ( F `
  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( F `  P ) )
 
Theoremcdlemk4 31023 Part of proof of Lemma K of [Crawley] p. 118, last line. We use  X for their h, since  H is already used. (Contributed by NM, 24-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) )
 
Theoremcdlemk5a 31024 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T ) 
 /\  ( ( R `
  G )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  (
 ( ( F `  P )  .\/  ( R `
  F ) ) 
 ./\  ( ( F `
  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) )
 
Theoremcdlemk5 31025 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 25-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( N  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( P  .\/  ( N `  P ) )  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) )
 
Theoremcdlemk6 31026 Part of proof of Lemma K of [Crawley] p. 118. Apply dalaw 30075. (Contributed by NM, 25-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( N  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  (
 ( R `  G )  =/=  ( R `  F )  /\  ( R `
  X )  =/=  ( R `  F ) ) ) ) 
 ->  ( ( P  .\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  .<_  ( ( ( ( G `
  P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
  P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
 
Theoremcdlemk8 31027 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 26-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( G `  P )  .\/  ( X `  P ) )  =  ( ( G `  P )  .\/  ( R `
  ( X  o.  `' G ) ) ) )
 
Theoremcdlemk9 31028 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( ( G `  P )  .\/  ( X `
  P ) ) 
 ./\  W )  =  ( R `  ( X  o.  `' G ) ) )
 
Theoremcdlemk9bN 31029 Part of proof of Lemma K of [Crawley] p. 118. TODO: is this needed? If so, shorten with cdlemk9 31028 if that one is also needed. (Contributed by NM, 28-Jun-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( ( G `  P )  .\/  ( X `
  P ) ) 
 ./\  W )  =  ( R `  ( G  o.  `' X ) ) )
 
Theoremcdlemki 31030* Part of proof of Lemma K of [Crawley] p. 118. TODO: Eliminate and put into cdlemksel 31034. (Contributed by NM, 25-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  I  =  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( G  o.  `' F ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  I  e.  T )
 
Theoremcdlemkvcl 31031 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  V  =  ( ( ( G `
  P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  P  e.  A ) 
 ->  V  e.  B )
 
Theoremcdlemk10 31032 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  V  =  ( ( ( G `
  P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  V  .<_  ( R `  ( X  o.  `' G ) ) )
 
Theoremcdlemksv 31033* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   =>    |-  ( G  e.  T  ->  ( S `  G )  =  ( iota_
 i  e.  T ( i `  P )  =  ( ( P 
 .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( G  o.  `' F ) ) ) ) ) )
 
Theoremcdlemksel 31034* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki 31030? (Contributed by NM, 26-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) ) 
 ->  ( S `  G )  e.  T )
 
Theoremcdlemksat 31035* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) ) 
 ->  ( ( S `  G ) `  P )  e.  A )
 
Theoremcdlemksv2 31036* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function  S at the fixed  P parameter. (Contributed by NM, 26-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) ) 
 ->  ( ( S `  G ) `  P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( G  o.  `' F ) ) ) ) )
 
Theoremcdlemk7 31037* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  V  =  ( ( ( G `
  P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( ( N  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
  G )  =/=  ( R `  F )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `  G ) `  P )  .<_  ( ( ( S `  X ) `  P )  .\/  V ) )
 
Theoremcdlemk11 31038* Part of proof of Lemma K of [Crawley] p. 118. Eq. 3, line 8, p. 119. (Contributed by NM, 29-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  V  =  ( ( ( G `
  P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( ( N  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
  G )  =/=  ( R `  F )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `  G ) `  P )  .<_  ( ( ( S `  X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
 
Theoremcdlemk12 31039* Part of proof of Lemma K of [Crawley] p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  ./\  =  ( meet `  K )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( ( N  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( ( R `  G )  =/=  ( R `  F )  /\  ( R `
  X )  =/=  ( R `  F ) )  /\  ( R `
  G )  =/=  ( R `  X ) ) )  ->  ( ( S `  G ) `  P )  =  ( ( P  .\/  ( G `  P ) )  ./\  ( ( ( S `
  X ) `  P )  .\/  ( R `
  ( X  o.  `' G ) ) ) ) )
 
Theoremcdlemkoatnle 31040* Utility lemma. (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( O `  P )  e.  A  /\  -.  ( O `  P )  .<_  W ) )
 
Theoremcdlemk13 31041* Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119.  O,  D are k1, f1. (Contributed by NM, 1-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( O `  P )  =  ( ( P 
 .\/  ( R `  D ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( D  o.  `' F ) ) ) ) )
 
Theoremcdlemkole 31042* Utility lemma. (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( O `  P ) 
 .<_  ( P  .\/  ( R `  D ) ) )
 
Theoremcdlemk14 31043* Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119.  O,  D are k1, f1. (Contributed by NM, 1-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( N `  P ) 
 .<_  ( ( O `  P )  .\/  ( R `
  ( F  o.  `' D ) ) ) )
 
Theoremcdlemk15 31044* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119.  O,  D are k1, f1. (Contributed by NM, 1-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( N `  P ) 
 .<_  ( ( P  .\/  ( R `  F ) )  ./\  ( ( O `  P )  .\/  ( R `  ( F  o.  `' D ) ) ) ) )
 
Theoremcdlemk16a 31045* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  G ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
 ( P  .\/  ( R `  G ) ) 
 ./\  ( ( O `
  P )  .\/  ( R `  ( G  o.  `' D ) ) ) )  e.  A  /\  -.  (
 ( P  .\/  ( R `  G ) ) 
 ./\  ( ( O `
  P )  .\/  ( R `  ( G  o.  `' D ) ) ) )  .<_  W ) )
 
Theoremcdlemk16 31046* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 1-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( ( P 
 .\/  ( R `  F ) )  ./\  ( ( O `  P )  .\/  ( R `
  ( F  o.  `' D ) ) ) )  e.  A  /\  -.  ( ( P  .\/  ( R `  F ) )  ./\  ( ( O `  P )  .\/  ( R `  ( F  o.  `' D ) ) ) )  .<_  W ) )
 
Theoremcdlemk17 31047* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119.  O,  D are k1, f1. (Contributed by NM, 1-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( N `  P )  =  ( ( P 
 .\/  ( R `  F ) )  ./\  ( ( O `  P )  .\/  ( R `
  ( F  o.  `' D ) ) ) ) )
 
Theoremcdlemk1u 31048* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( O `
  P ) ) 
 .<_  ( ( D `  P )  .\/  ( R `
  D ) ) )
 
Theoremcdlemk5auN 31049* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
 ( D `  P )  .\/  ( R `  D ) )  ./\  ( ( D `  P )  .\/  ( R `
  ( G  o.  `' D ) ) ) )  .<_  ( ( X `
  P )  .\/  ( R `  ( X  o.  `' D ) ) ) )
 
Theoremcdlemk5u 31050* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 4-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( ( N  e.  T  /\  G  e.  T  /\  X  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B ) ) 
 /\  ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X )  =/=  ( R `  D ) ) ) )  ->  ( ( P  .\/  ( O `  P ) )  ./\  ( ( G `  P )  .\/  ( R `
  ( G  o.  `' D ) ) ) )  .<_  ( ( X `
  P )  .\/  ( R `  ( X  o.  `' D ) ) ) )
 
Theoremcdlemk6u 31051* Part of proof of Lemma K of [Crawley] p. 118. Apply dalaw 30075. (Contributed by NM, 4-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( ( N  e.  T  /\  G  e.  T  /\  X  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B ) ) 
 /\  ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X )  =/=  ( R `  D ) ) ) )  ->  ( ( P  .\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `
  ( G  o.  `' D ) ) ) )  .<_  ( ( ( ( G `  P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `
  ( X  o.  `' D ) ) ) )  .\/  ( (
 ( X `  P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `
  P ) ) ) ) )
 
Theoremcdlemkj 31052* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  Z  =  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  G ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  Z  e.  T )
 
TheoremcdlemkuvN 31053* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function  U. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( G  e.  T  ->  ( U `  G )  =  ( iota_ j  e.  T ( j `  P )  =  (
 ( P  .\/  ( R `  G ) ) 
 ./\  ( ( O `
  P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) ) )
 
Theoremcdlemkuel 31054* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma1 (p) function to be a translation. TODO: combine cdlemkj 31052? (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  G ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( U `  G )  e.  T )
 
Theoremcdlemkuat 31055* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 4-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  G ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  G ) `  P )  e.  A )
 
Theoremcdlemkuv2 31056* Part of proof of Lemma K of [Crawley] p. 118. Line 16 on p. 119 for i = 1, where sigma1 (p) is  U, f1 is  D, and k1 is  O. (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  G ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  G ) `  P )  =  (
 ( P  .\/  ( R `  G ) ) 
 ./\  ( ( O `
  P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) )
 
Theoremcdlemk18 31057* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119.  N,  U,  O,  D are k, sigma1 (p), k1, f1. (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( N `  P )  =  ( ( U `
  F ) `  P ) )
 
Theoremcdlemk19 31058* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119.  N,  U,  O,  D are k, sigma1 (p), k1, f1. (Contributed by NM, 2-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( U `  F )  =  N )
 
Theoremcdlemk7u 31059* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119 for the sigma1 case. (Contributed by NM, 3-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   &    |-  V  =  ( ( ( G `  P )  .\/  ( X `
  P ) ) 
 ./\  ( ( R `
  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  D  e.  T ) 
 /\  ( ( N  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `
  X )  =/=  ( R `  D ) ) ) ) 
 ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  X ) `
  P )  .\/  V ) )
 
Theoremcdlemk11u 31060* Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma1 ( U) case. (Contributed by NM, 4-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   &    |-  V  =  ( ( ( G `  P )  .\/  ( X `
  P ) ) 
 ./\  ( ( R `
  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  D  e.  T ) 
 /\  ( ( N  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `
  X )  =/=  ( R `  D ) ) ) ) 
 ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  X ) `
  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
 
Theoremcdlemk12u 31061* Part of proof of Lemma K of [Crawley] p. 118. Line 18, p. 119, showing Eq. 4 (line 10, p. 119) for the sigma1 ( U) case. (Contributed by NM, 4-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( ( N  e.  T  /\  G  e.  T  /\  X  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B ) ) 
 /\  ( X  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  X ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `
  X )  =/=  ( R `  D ) ) ) ) 
 ->  ( ( U `  G ) `  P )  =  ( ( P  .\/  ( G `  P ) )  ./\  ( ( ( U `
  X ) `  P )  .\/  ( R `
  ( X  o.  `' G ) ) ) ) )
 
Theoremcdlemk21N 31062* Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=0 and j=1. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( ( N  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) 
 /\  G  =/=  (  _I  |`  B ) ) 
 /\  ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  G )  =/=  ( R `  F ) ) ) )  ->  ( ( S `  G ) `  P )  =  (
 ( U `  G ) `  P ) )
 
Theoremcdlemk20 31063* Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our  D,  C,  O,  Q,  U,  V represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  O  =  ( S `  D )   &    |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( O `  P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( ( N  e.  T  /\  C  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( ( R `
  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  D ) ) ) )  ->  ( ( U `  C ) `  P )  =  ( Q `  P ) )
 
Theoremcdlemkoatnle-2N 31064* Utility lemma. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( Q `  P )  e.  A  /\  -.  ( Q `  P )  .<_  W ) )
 
Theoremcdlemk13-2N 31065* Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119.  Q,  C are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( Q `  P )  =  ( ( P 
 .\/  ( R `  C ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( C  o.  `' F ) ) ) ) )
 
Theoremcdlemkole-2N 31066* Utility lemma. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( Q `  P ) 
 .<_  ( P  .\/  ( R `  C ) ) )
 
Theoremcdlemk14-2N 31067* Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119.  Q,  C are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P ) 
 .<_  ( ( Q `  P )  .\/  ( R `
  ( F  o.  `' C ) ) ) )
 
Theoremcdlemk15-2N 31068* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119.  Q,  C are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P ) 
 .<_  ( ( P  .\/  ( R `  F ) )  ./\  ( ( Q `  P )  .\/  ( R `  ( F  o.  `' C ) ) ) ) )
 
Theoremcdlemk16-2N 31069* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( ( P 
 .\/  ( R `  F ) )  ./\  ( ( Q `  P )  .\/  ( R `
  ( F  o.  `' C ) ) ) )  e.  A  /\  -.  ( ( P  .\/  ( R `  F ) )  ./\  ( ( Q `  P )  .\/  ( R `  ( F  o.  `' C ) ) ) )  .<_  W ) )
 
Theoremcdlemk17-2N 31070* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119.  Q,  C are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( F  =/=  (  _I  |`  B ) 
 /\  C  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P )  =  ( ( P 
 .\/  ( R `  F ) )  ./\  ( ( Q `  P )  .\/  ( R `
  ( F  o.  `' C ) ) ) ) )
 
Theoremcdlemkj-2N 31071* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   &    |-  Y  =  ( iota_ k  e.  T ( k `
  P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( Q `  P )  .\/  ( R `  ( G  o.  `' C ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  C )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  G ) ) 
 /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  Y  e.  T )
 
Theoremcdlemkuv-2N 31072* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma2 (p) function, given  V. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( f  o.  `' F ) ) ) ) ) )   &    |-  Q  =  ( S `  C )   &    |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T ( k `
  P )  =  ( ( P  .\/  ( R `  d ) )  ./\  ( ( Q `  P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )   =>    |-  ( G  e.  T  ->  ( V `  G )  =  ( iota_ k  e.  T ( k `  P )  =  (
 ( P  .\/  ( R `  G ) ) 
 ./\  ( ( Q `
  P )  .\/  ( R `  ( G  o.  `' C ) ) ) ) ) )
 
Theoremcdlemkuel-2N 31073* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma2 (p) function to be a translation. TODO: combine cdlemkj 31052? (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base