MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd12g Unicode version

Theorem mnd12g 14393
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndlem1.b  |-  B  =  ( Base `  G
)
mndlem1.p  |-  .+  =  ( +g  `  G )
mnd4g.1  |-  ( ph  ->  G  e.  Mnd )
mnd4g.2  |-  ( ph  ->  X  e.  B )
mnd4g.3  |-  ( ph  ->  Y  e.  B )
mnd4g.4  |-  ( ph  ->  Z  e.  B )
mnd12g.5  |-  ( ph  ->  ( X  .+  Y
)  =  ( Y 
.+  X ) )
Assertion
Ref Expression
mnd12g  |-  ( ph  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )

Proof of Theorem mnd12g
StepHypRef Expression
1 mnd12g.5 . . 3  |-  ( ph  ->  ( X  .+  Y
)  =  ( Y 
.+  X ) )
21oveq1d 5889 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( Y  .+  X ) 
.+  Z ) )
3 mnd4g.1 . . 3  |-  ( ph  ->  G  e.  Mnd )
4 mnd4g.2 . . 3  |-  ( ph  ->  X  e.  B )
5 mnd4g.3 . . 3  |-  ( ph  ->  Y  e.  B )
6 mnd4g.4 . . 3  |-  ( ph  ->  Z  e.  B )
7 mndlem1.b . . . 4  |-  B  =  ( Base `  G
)
8 mndlem1.p . . . 4  |-  .+  =  ( +g  `  G )
97, 8mndass 14389 . . 3  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
103, 4, 5, 6, 9syl13anc 1184 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )
117, 8mndass 14389 . . 3  |-  ( ( G  e.  Mnd  /\  ( Y  e.  B  /\  X  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Y  .+  ( X  .+  Z ) ) )
123, 5, 4, 6, 11syl13anc 1184 . 2  |-  ( ph  ->  ( ( Y  .+  X )  .+  Z
)  =  ( Y 
.+  ( X  .+  Z ) ) )
132, 10, 123eqtr3d 2336 1  |-  ( ph  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Mndcmnd 14377
This theorem is referenced by:  mnd4g  14394  cmn12  15125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165  ax-pow 4204
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-mnd 14383
  Copyright terms: Public domain W3C validator