MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndass Structured version   Unicode version

Theorem mndass 14701
Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
mndlem1.b  |-  B  =  ( Base `  G
)
mndlem1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mndass  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )

Proof of Theorem mndass
StepHypRef Expression
1 mndlem1.b . . 3  |-  B  =  ( Base `  G
)
2 mndlem1.p . . 3  |-  .+  =  ( +g  `  G )
31, 2mndlem1 14699 . 2  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  e.  B  /\  ( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) ) )
43simprd 451 1  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5457  (class class class)co 6084   Basecbs 13474   +g cplusg 13534   Mndcmnd 14689
This theorem is referenced by:  mnd32g  14704  mnd12g  14705  mnd4g  14706  issubmnd  14729  prdsmndd  14733  imasmnd  14738  gsumccat  14792  grpass  14824  mulgnndir  14917  cntzsubm  15139  oppgmnd  15155  frgp0  15397  mulgnn0di  15453  gsumval3eu  15518  gsumval3  15519  rngass  15685  mndvass  27438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4341  ax-pow 4380
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-iota 5421  df-fv 5465  df-ov 6087  df-mnd 14695
  Copyright terms: Public domain W3C validator