MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndoismgm Unicode version

Theorem mndoismgm 21024
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Assertion
Ref Expression
mndoismgm  |-  ( G  e. MndOp  ->  G  e.  Magma )

Proof of Theorem mndoismgm
StepHypRef Expression
1 mndoissmgrp 21022 . 2  |-  ( G  e. MndOp  ->  G  e.  SemiGrp )
2 smgrpismgm 21015 . 2  |-  ( G  e.  SemiGrp  ->  G  e.  Magma )
31, 2syl 15 1  |-  ( G  e. MndOp  ->  G  e.  Magma )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1696   Magmacmagm 21001   SemiGrpcsem 21013  MndOpcmndo 21020
This theorem is referenced by:  mndomgmid  21025  rngo1cl  21112  isdrngo2  26692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-in 3172  df-sgr 21014  df-mndo 21021
  Copyright terms: Public domain W3C validator