Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndoissmgrp Structured version   Unicode version

Theorem mndoissmgrp 21958
 Description: A monoid is a semi-group. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Assertion
Ref Expression
mndoissmgrp MndOp

Proof of Theorem mndoissmgrp
StepHypRef Expression
1 elin 3516 . . 3
21simplbi 448 . 2
3 df-mndo 21957 . 2 MndOp
42, 3eleq2s 2534 1 MndOp
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1727   cin 3305   cexid 21933  csem 21949  MndOpcmndo 21956 This theorem is referenced by:  mndoismgm  21960 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-v 2964  df-in 3313  df-mndo 21957
 Copyright terms: Public domain W3C validator