MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndomgmid Unicode version

Theorem mndomgmid 21009
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Assertion
Ref Expression
mndomgmid  |-  ( G  e. MndOp  ->  G  e.  (
Magma  i^i  ExId  ) )

Proof of Theorem mndomgmid
StepHypRef Expression
1 mndoismgm 21008 . 2  |-  ( G  e. MndOp  ->  G  e.  Magma )
2 mndoisexid 21007 . 2  |-  ( G  e. MndOp  ->  G  e.  ExId  )
3 elin 3358 . 2  |-  ( G  e.  ( Magma  i^i  ExId  )  <-> 
( G  e.  Magma  /\  G  e.  ExId  )
)
41, 2, 3sylanbrc 645 1  |-  ( G  e. MndOp  ->  G  e.  (
Magma  i^i  ExId  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684    i^i cin 3151    ExId cexid 20981   Magmacmagm 20985  MndOpcmndo 21004
This theorem is referenced by:  ismndo2  21012  rngoidmlem  21090  expus  25365  clfsebs3  25380  ununr  25420  zintdom  25438  glmrngo  25482  svli2  25484  isdrngo2  26589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-sgr 20998  df-mndo 21005
  Copyright terms: Public domain W3C validator