MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndplusf Unicode version

Theorem mndplusf 14383
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
mndplusf.1  |-  B  =  ( Base `  G
)
mndplusf.2  |-  .+^  =  ( + f `  G
)
Assertion
Ref Expression
mndplusf  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B ) --> B )

Proof of Theorem mndplusf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndplusf.1 . . . . 5  |-  B  =  ( Base `  G
)
2 eqid 2283 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
31, 2mndcl 14372 . . . 4  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
433expb 1152 . . 3  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
54ralrimivva 2635 . 2  |-  ( G  e.  Mnd  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  e.  B
)
6 mndplusf.2 . . . 4  |-  .+^  =  ( + f `  G
)
71, 2, 6plusffval 14379 . . 3  |-  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) y ) )
87fmpt2 6191 . 2  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) y )  e.  B  <->  .+^  : ( B  X.  B ) --> B )
95, 8sylib 188 1  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   A.wral 2543    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   Mndcmnd 14361   + fcplusf 14364
This theorem is referenced by:  grpplusf  14499  submtmd  17787  mhmhmeotmd  23300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-mnd 14367  df-plusf 14368
  Copyright terms: Public domain W3C validator