Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndvass Unicode version

Theorem mndvass 26859
Description: Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b  |-  B  =  ( Base `  M
)
mndvcl.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mndvass  |-  ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) ) )  -> 
( ( X  o F  .+  Y )  o F  .+  Z )  =  ( X  o F  .+  ( Y  o F  .+  Z ) ) )

Proof of Theorem mndvass
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 6791 . . . . 5  |-  ( X  e.  ( B  ^m  I )  ->  ( B  e.  _V  /\  I  e.  _V ) )
21simprd 449 . . . 4  |-  ( X  e.  ( B  ^m  I )  ->  I  e.  _V )
323ad2ant1 976 . . 3  |-  ( ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) )  ->  I  e.  _V )
43adantl 452 . 2  |-  ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) ) )  ->  I  e.  _V )
5 elmapi 6792 . . . 4  |-  ( X  e.  ( B  ^m  I )  ->  X : I --> B )
653ad2ant1 976 . . 3  |-  ( ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) )  ->  X : I --> B )
76adantl 452 . 2  |-  ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) ) )  ->  X : I --> B )
8 elmapi 6792 . . . 4  |-  ( Y  e.  ( B  ^m  I )  ->  Y : I --> B )
983ad2ant2 977 . . 3  |-  ( ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) )  ->  Y : I --> B )
109adantl 452 . 2  |-  ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) ) )  ->  Y : I --> B )
11 elmapi 6792 . . . 4  |-  ( Z  e.  ( B  ^m  I )  ->  Z : I --> B )
12113ad2ant3 978 . . 3  |-  ( ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) )  ->  Z : I --> B )
1312adantl 452 . 2  |-  ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) ) )  ->  Z : I --> B )
14 mndvcl.b . . . 4  |-  B  =  ( Base `  M
)
15 mndvcl.p . . . 4  |-  .+  =  ( +g  `  M )
1614, 15mndass 14373 . . 3  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
1716adantlr 695 . 2  |-  ( ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I ) ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
184, 7, 10, 13, 17caofass 6111 1  |-  ( ( M  e.  Mnd  /\  ( X  e.  ( B  ^m  I )  /\  Y  e.  ( B  ^m  I )  /\  Z  e.  ( B  ^m  I
) ) )  -> 
( ( X  o F  .+  Y )  o F  .+  Z )  =  ( X  o F  .+  ( Y  o F  .+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076    ^m cmap 6772   Basecbs 13148   +g cplusg 13208   Mndcmnd 14361
This theorem is referenced by:  mendrng  26912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-map 6774  df-mnd 14367
  Copyright terms: Public domain W3C validator