MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfltxr Unicode version

Theorem mnfltxr 10466
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr  |-  ( ( A  e.  RR  \/  A  =  +oo )  ->  -oo  <  A )

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 10464 . 2  |-  ( A  e.  RR  ->  -oo  <  A )
2 mnfltpnf 10465 . . 3  |-  -oo  <  +oo
3 breq2 4027 . . 3  |-  ( A  =  +oo  ->  (  -oo  <  A  <->  -oo  <  +oo ) )
42, 3mpbiri 224 . 2  |-  ( A  =  +oo  ->  -oo  <  A )
51, 4jaoi 368 1  |-  ( ( A  e.  RR  \/  A  =  +oo )  ->  -oo  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    = wceq 1623    e. wcel 1684   class class class wbr 4023   RRcr 8736    +oocpnf 8864    -oocmnf 8865    < clt 8867
This theorem is referenced by:  supxrgtmnf  10648  nmogtmnf  21348  nmopgtmnf  22448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872
  Copyright terms: Public domain W3C validator