MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanim Structured version   Unicode version

Theorem moanim 2337
Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 3-Dec-2001.)
Hypothesis
Ref Expression
moanim.1  |-  F/ x ph
Assertion
Ref Expression
moanim  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )

Proof of Theorem moanim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 impexp 434 . . . . 5  |-  ( ( ( ph  /\  ps )  ->  x  =  y )  <->  ( ph  ->  ( ps  ->  x  =  y ) ) )
21albii 1575 . . . 4  |-  ( A. x ( ( ph  /\ 
ps )  ->  x  =  y )  <->  A. x
( ph  ->  ( ps 
->  x  =  y
) ) )
3 moanim.1 . . . . 5  |-  F/ x ph
4319.21 1814 . . . 4  |-  ( A. x ( ph  ->  ( ps  ->  x  =  y ) )  <->  ( ph  ->  A. x ( ps 
->  x  =  y
) ) )
52, 4bitri 241 . . 3  |-  ( A. x ( ( ph  /\ 
ps )  ->  x  =  y )  <->  ( ph  ->  A. x ( ps 
->  x  =  y
) ) )
65exbii 1592 . 2  |-  ( E. y A. x ( ( ph  /\  ps )  ->  x  =  y )  <->  E. y ( ph  ->  A. x ( ps 
->  x  =  y
) ) )
7 nfv 1629 . . 3  |-  F/ y ( ph  /\  ps )
87mo2 2310 . 2  |-  ( E* x ( ph  /\  ps )  <->  E. y A. x
( ( ph  /\  ps )  ->  x  =  y ) )
9 nfv 1629 . . . . 5  |-  F/ y ps
109mo2 2310 . . . 4  |-  ( E* x ps  <->  E. y A. x ( ps  ->  x  =  y ) )
1110imbi2i 304 . . 3  |-  ( (
ph  ->  E* x ps )  <->  ( ph  ->  E. y A. x ( ps  ->  x  =  y ) ) )
12 19.37v 1922 . . 3  |-  ( E. y ( ph  ->  A. x ( ps  ->  x  =  y ) )  <-> 
( ph  ->  E. y A. x ( ps  ->  x  =  y ) ) )
1311, 12bitr4i 244 . 2  |-  ( (
ph  ->  E* x ps )  <->  E. y ( ph  ->  A. x ( ps 
->  x  =  y
) ) )
146, 8, 133bitr4i 269 1  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550   F/wnf 1553   E*wmo 2282
This theorem is referenced by:  moanimv  2339  moaneu  2340  moanmo  2341  2eu1  2361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286
  Copyright terms: Public domain W3C validator