Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanim Structured version   Unicode version

Theorem moanim 2337
 Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 3-Dec-2001.)
Hypothesis
Ref Expression
moanim.1
Assertion
Ref Expression
moanim

Proof of Theorem moanim
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 impexp 434 . . . . 5
21albii 1575 . . . 4
3 moanim.1 . . . . 5
4319.21 1814 . . . 4
52, 4bitri 241 . . 3
65exbii 1592 . 2
7 nfv 1629 . . 3
87mo2 2310 . 2
9 nfv 1629 . . . . 5
109mo2 2310 . . . 4
1110imbi2i 304 . . 3
12 19.37v 1922 . . 3
1311, 12bitr4i 244 . 2
146, 8, 133bitr4i 269 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wex 1550  wnf 1553  wmo 2282 This theorem is referenced by:  moanimv  2339  moaneu  2340  moanmo  2341  2eu1  2361 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286
 Copyright terms: Public domain W3C validator