Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobid Structured version   Unicode version

Theorem mobid 2315
 Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobid.1
mobid.2
Assertion
Ref Expression
mobid

Proof of Theorem mobid
StepHypRef Expression
1 mobid.1 . . . 4
2 mobid.2 . . . 4
31, 2exbid 1789 . . 3
41, 2eubid 2288 . . 3
53, 4imbi12d 312 . 2
6 df-mo 2286 . 2
7 df-mo 2286 . 2
85, 6, 73bitr4g 280 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wex 1550  wnf 1553  weu 2281  wmo 2282 This theorem is referenced by:  mobidv  2316  euan  2338  rmobida  2895  rmoeq1f  2903  funcnvmptOLD  24082  funcnvmpt  24083 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nf 1554  df-eu 2285  df-mo 2286
 Copyright terms: Public domain W3C validator