MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod1ile Unicode version

Theorem mod1ile 14260
Description: The weak direction of the modular law (e.g. pmod1i 29855, atmod1i1 29864) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b  |-  B  =  ( Base `  K
)
modle.l  |-  .<_  =  ( le `  K )
modle.j  |-  .\/  =  ( join `  K )
modle.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
mod1ile  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )

Proof of Theorem mod1ile
StepHypRef Expression
1 simpll 730 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  K  e.  Lat )
2 simplr1 997 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  e.  B )
3 simplr2 998 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  Y  e.  B )
4 modle.b . . . . . 6  |-  B  =  ( Base `  K
)
5 modle.l . . . . . 6  |-  .<_  =  ( le `  K )
6 modle.j . . . . . 6  |-  .\/  =  ( join `  K )
74, 5, 6latlej1 14215 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X  .<_  ( X  .\/  Y ) )
81, 2, 3, 7syl3anc 1182 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  .<_  ( X  .\/  Y
) )
9 simpr 447 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  .<_  Z )
104, 6latjcl 14205 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
111, 2, 3, 10syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( X  .\/  Y )  e.  B )
12 simplr3 999 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  Z  e.  B )
13 modle.m . . . . . 6  |-  ./\  =  ( meet `  K )
144, 5, 13latlem12 14233 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  ( X  .\/  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<_  ( X  .\/  Y )  /\  X  .<_  Z )  <->  X  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
151, 2, 11, 12, 14syl13anc 1184 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( X  .<_  ( X 
.\/  Y )  /\  X  .<_  Z )  <->  X  .<_  ( ( X  .\/  Y
)  ./\  Z )
) )
168, 9, 15mpbi2and 887 . . 3  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  .<_  ( ( X  .\/  Y )  ./\  Z )
)
174, 5, 6, 13latmlej12 14246 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Y  e.  B  /\  Z  e.  B  /\  X  e.  B
) )  ->  ( Y  ./\  Z )  .<_  ( X  .\/  Y ) )
181, 3, 12, 2, 17syl13anc 1184 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  .<_  ( X  .\/  Y ) )
194, 5, 13latmle2 14232 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  .<_  Z )
201, 3, 12, 19syl3anc 1182 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  .<_  Z )
214, 13latmcl 14206 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
221, 3, 12, 21syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  e.  B )
234, 5, 13latlem12 14233 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( Y  ./\  Z )  e.  B  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B ) )  -> 
( ( ( Y 
./\  Z )  .<_  ( X  .\/  Y )  /\  ( Y  ./\  Z )  .<_  Z )  <->  ( Y  ./\  Z )  .<_  ( ( X  .\/  Y )  ./\  Z )
) )
241, 22, 11, 12, 23syl13anc 1184 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( ( Y  ./\  Z )  .<_  ( X  .\/  Y )  /\  ( Y  ./\  Z )  .<_  Z )  <->  ( Y  ./\ 
Z )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
2518, 20, 24mpbi2and 887 . . 3  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  .<_  ( ( X  .\/  Y )  ./\  Z )
)
264, 13latmcl 14206 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
271, 11, 12, 26syl3anc 1182 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
284, 5, 6latjle12 14217 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  ( Y  ./\  Z
)  e.  B  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B ) )  -> 
( ( X  .<_  ( ( X  .\/  Y
)  ./\  Z )  /\  ( Y  ./\  Z
)  .<_  ( ( X 
.\/  Y )  ./\  Z ) )  <->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
291, 2, 22, 27, 28syl13anc 1184 . . 3  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( X  .<_  ( ( X  .\/  Y ) 
./\  Z )  /\  ( Y  ./\  Z ) 
.<_  ( ( X  .\/  Y )  ./\  Z )
)  <->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y )  ./\  Z ) ) )
3016, 25, 29mpbi2and 887 . 2  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
3130ex 423 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   Basecbs 13195   lecple 13262   joincjn 14127   meetcmee 14128   Latclat 14200
This theorem is referenced by:  mod2ile  14261  hlmod1i  29863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-undef 6340  df-riota 6346  df-poset 14129  df-lub 14157  df-glb 14158  df-join 14159  df-meet 14160  df-lat 14201
  Copyright terms: Public domain W3C validator