MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modadd1 Unicode version

Theorem modadd1 11017
Description: Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modadd1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) )

Proof of Theorem modadd1
StepHypRef Expression
1 modval 10991 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
2 modval 10991 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
31, 2eqeqan12d 2311 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  D  e.  RR+ )  /\  ( B  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
43anandirs 804 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR+ )  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
54adantrl 696 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
6 oveq1 5881 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
75, 6syl6bi 219 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) ) )
8 recn 8843 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
98adantr 451 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  A  e.  CC )
10 recn 8843 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  CC )
1110ad2antrl 708 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  C  e.  CC )
12 rpcn 10378 . . . . . . . . . 10  |-  ( D  e.  RR+  ->  D  e.  CC )
1312adantl 452 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
14 rerpdivcl 10397 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  /  D
)  e.  RR )
15 reflcl 10944 . . . . . . . . . . 11  |-  ( ( A  /  D )  e.  RR  ->  ( |_ `  ( A  /  D ) )  e.  RR )
1615recnd 8877 . . . . . . . . . 10  |-  ( ( A  /  D )  e.  RR  ->  ( |_ `  ( A  /  D ) )  e.  CC )
1714, 16syl 15 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  CC )
1813, 17mulcld 8871 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
1918adantrl 696 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
209, 11, 19addsubd 9194 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  +  C ) )
2120adantlr 695 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
) )
22 recn 8843 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
2322adantr 451 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  B  e.  CC )
2410ad2antrl 708 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  C  e.  CC )
2512adantl 452 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
26 rerpdivcl 10397 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  /  D
)  e.  RR )
27 reflcl 10944 . . . . . . . . . . 11  |-  ( ( B  /  D )  e.  RR  ->  ( |_ `  ( B  /  D ) )  e.  RR )
2827recnd 8877 . . . . . . . . . 10  |-  ( ( B  /  D )  e.  RR  ->  ( |_ `  ( B  /  D ) )  e.  CC )
2926, 28syl 15 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  CC )
3025, 29mulcld 8871 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3130adantrl 696 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3223, 24, 31addsubd 9194 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
3332adantll 694 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) )
3421, 33eqeq12d 2310 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) ) )
357, 34sylibrd 225 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
36 oveq1 5881 . . . 4  |-  ( ( ( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D ) )
37 readdcl 8836 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
3837adantrr 697 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( A  +  C )  e.  RR )
39 simprr 733 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
4014flcld 10946 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  ZZ )
4140adantrl 696 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( |_ `  ( A  /  D
) )  e.  ZZ )
42 modcyc2 11016 . . . . . . 7  |-  ( ( ( A  +  C
)  e.  RR  /\  D  e.  RR+  /\  ( |_ `  ( A  /  D ) )  e.  ZZ )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4338, 39, 41, 42syl3anc 1182 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4443adantlr 695 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
45 readdcl 8836 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
4645adantrr 697 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( B  +  C )  e.  RR )
47 simprr 733 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
4826flcld 10946 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  ZZ )
4948adantrl 696 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( |_ `  ( B  /  D
) )  e.  ZZ )
50 modcyc2 11016 . . . . . . 7  |-  ( ( ( B  +  C
)  e.  RR  /\  D  e.  RR+  /\  ( |_ `  ( B  /  D ) )  e.  ZZ )  ->  (
( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
5146, 47, 49, 50syl3anc 1182 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
5251adantll 694 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
5344, 52eqeq12d 2310 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D
)  <->  ( ( A  +  C )  mod 
D )  =  ( ( B  +  C
)  mod  D )
) )
5436, 53syl5ib 210 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C
)  mod  D )
) )
5535, 54syld 40 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) ) )
56553impia 1148 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752    + caddc 8756    x. cmul 8758    - cmin 9053    / cdiv 9439   ZZcz 10040   RR+crp 10370   |_cfl 10940    mod cmo 10989
This theorem is referenced by:  modadd12d  11021  moddvds  12554  modsubi  13103  lgslem4  20554  lgsvalmod  20570  lgsmod  20576  lgsne0  20588  lgseisen  20608  modaddabs  24026  pellexlem6  27022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fl 10941  df-mod 10990
  Copyright terms: Public domain W3C validator