MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc Unicode version

Theorem modcyc 10999
Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modcyc  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )

Proof of Theorem modcyc
StepHypRef Expression
1 zre 10028 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  RR )
2 rpre 10360 . . . . . . . 8  |-  ( B  e.  RR+  ->  B  e.  RR )
3 remulcl 8822 . . . . . . . 8  |-  ( ( N  e.  RR  /\  B  e.  RR )  ->  ( N  x.  B
)  e.  RR )
41, 2, 3syl2an 463 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  B  e.  RR+ )  -> 
( N  x.  B
)  e.  RR )
5 readdcl 8820 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( N  x.  B
)  e.  RR )  ->  ( A  +  ( N  x.  B
) )  e.  RR )
64, 5sylan2 460 . . . . . 6  |-  ( ( A  e.  RR  /\  ( N  e.  ZZ  /\  B  e.  RR+ )
)  ->  ( A  +  ( N  x.  B ) )  e.  RR )
763impb 1147 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( A  +  ( N  x.  B ) )  e.  RR )
8 simp3 957 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  B  e.  RR+ )
9 modval 10975 . . . . 5  |-  ( ( ( A  +  ( N  x.  B ) )  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
107, 8, 9syl2anc 642 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
11 recn 8827 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  A  e.  CC )
12113ad2ant1 976 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  A  e.  CC )
134recnd 8861 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  B  e.  RR+ )  -> 
( N  x.  B
)  e.  CC )
14133adant1 973 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( N  x.  B )  e.  CC )
15 rpcnne0 10371 . . . . . . . . . . . 12  |-  ( B  e.  RR+  ->  ( B  e.  CC  /\  B  =/=  0 ) )
16153ad2ant3 978 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( B  e.  CC  /\  B  =/=  0 ) )
17 divdir 9447 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( N  x.  B
)  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  ->  ( ( A  +  ( N  x.  B ) )  /  B )  =  ( ( A  /  B
)  +  ( ( N  x.  B )  /  B ) ) )
1812, 14, 16, 17syl3anc 1182 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  /  B )  =  ( ( A  /  B )  +  ( ( N  x.  B )  /  B
) ) )
19 zcn 10029 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
20 divcan4 9449 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( N  x.  B
)  /  B )  =  N )
21203expb 1152 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  ->  ( ( N  x.  B )  /  B )  =  N )
2219, 15, 21syl2an 463 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  B  e.  RR+ )  -> 
( ( N  x.  B )  /  B
)  =  N )
23223adant1 973 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( N  x.  B
)  /  B )  =  N )
2423oveq2d 5874 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  /  B
)  +  ( ( N  x.  B )  /  B ) )  =  ( ( A  /  B )  +  N ) )
2518, 24eqtrd 2315 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  /  B )  =  ( ( A  /  B )  +  N ) )
2625fveq2d 5529 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) )  =  ( |_ `  (
( A  /  B
)  +  N ) ) )
27 rerpdivcl 10381 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
28273adant2 974 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR )
29 simp2 956 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  N  e.  ZZ )
30 fladdz 10950 . . . . . . . . 9  |-  ( ( ( A  /  B
)  e.  RR  /\  N  e.  ZZ )  ->  ( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3128, 29, 30syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( |_ `  ( ( A  /  B )  +  N ) )  =  ( ( |_ `  ( A  /  B
) )  +  N
) )
3226, 31eqtrd 2315 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) )  =  ( ( |_ `  ( A  /  B
) )  +  N
) )
3332oveq2d 5874 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) )  =  ( B  x.  (
( |_ `  ( A  /  B ) )  +  N ) ) )
34 rpcn 10362 . . . . . . . 8  |-  ( B  e.  RR+  ->  B  e.  CC )
35343ad2ant3 978 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  B  e.  CC )
36 reflcl 10928 . . . . . . . . . 10  |-  ( ( A  /  B )  e.  RR  ->  ( |_ `  ( A  /  B ) )  e.  RR )
3736recnd 8861 . . . . . . . . 9  |-  ( ( A  /  B )  e.  RR  ->  ( |_ `  ( A  /  B ) )  e.  CC )
3827, 37syl 15 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( |_ `  ( A  /  B ) )  e.  CC )
39383adant2 974 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( |_ `  ( A  /  B ) )  e.  CC )
40193ad2ant2 977 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  N  e.  CC )
4135, 39, 40adddid 8859 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( B  x.  ( ( |_ `  ( A  /  B ) )  +  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( B  x.  N ) ) )
42 mulcom 8823 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  B  e.  CC )  ->  ( N  x.  B
)  =  ( B  x.  N ) )
4319, 34, 42syl2an 463 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  B  e.  RR+ )  -> 
( N  x.  B
)  =  ( B  x.  N ) )
44433adant1 973 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( N  x.  B )  =  ( B  x.  N ) )
4544eqcomd 2288 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( B  x.  N )  =  ( N  x.  B ) )
4645oveq2d 5874 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( B  x.  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) )
4733, 41, 463eqtrd 2319 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) )  =  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) )
4847oveq2d 5874 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) ) )  =  ( ( A  +  ( N  x.  B ) )  -  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) ) )
4934adantl 452 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  B  e.  CC )
5049, 38mulcld 8855 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( B  x.  ( |_ `  ( A  /  B ) ) )  e.  CC )
51503adant2 974 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  e.  CC )
5212, 51, 14pnpcan2d 9195 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  -  ( ( B  x.  ( |_
`  ( A  /  B ) ) )  +  ( N  x.  B ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
5310, 48, 523eqtrd 2319 . . 3  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
54 modval 10975 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
55543adant2 974 . . 3  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
5653, 55eqtr4d 2318 . 2  |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  B  e.  RR+ )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )
57563com23 1157 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    - cmin 9037    / cdiv 9423   ZZcz 10024   RR+crp 10354   |_cfl 10924    mod cmo 10973
This theorem is referenced by:  modcyc2  11000  modxai  13083  wilthlem1  20306  wilthlem2  20307  lgsdir2lem1  20562  lgsdir2lem5  20566  lgseisenlem1  20588
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974
  Copyright terms: Public domain W3C validator