MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc2 Unicode version

Theorem modcyc2 11016
Description: The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modcyc2  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  (
( A  -  ( B  x.  N )
)  mod  B )  =  ( A  mod  B ) )

Proof of Theorem modcyc2
StepHypRef Expression
1 recn 8843 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 rpcn 10378 . . . 4  |-  ( B  e.  RR+  ->  B  e.  CC )
3 zcn 10045 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
4 mulneg1 9232 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  B  e.  CC )  ->  ( -u N  x.  B )  =  -u ( N  x.  B
) )
54ancoms 439 . . . . . . . 8  |-  ( ( B  e.  CC  /\  N  e.  CC )  ->  ( -u N  x.  B )  =  -u ( N  x.  B
) )
6 mulcom 8839 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  N  e.  CC )  ->  ( B  x.  N
)  =  ( N  x.  B ) )
76negeqd 9062 . . . . . . . 8  |-  ( ( B  e.  CC  /\  N  e.  CC )  -> 
-u ( B  x.  N )  =  -u ( N  x.  B
) )
85, 7eqtr4d 2331 . . . . . . 7  |-  ( ( B  e.  CC  /\  N  e.  CC )  ->  ( -u N  x.  B )  =  -u ( B  x.  N
) )
983adant1 973 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  CC )  ->  ( -u N  x.  B )  =  -u ( B  x.  N ) )
109oveq2d 5890 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  CC )  ->  ( A  +  ( -u N  x.  B ) )  =  ( A  +  -u ( B  x.  N
) ) )
11 mulcl 8837 . . . . . . 7  |-  ( ( B  e.  CC  /\  N  e.  CC )  ->  ( B  x.  N
)  e.  CC )
12 negsub 9111 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  x.  N
)  e.  CC )  ->  ( A  +  -u ( B  x.  N
) )  =  ( A  -  ( B  x.  N ) ) )
1311, 12sylan2 460 . . . . . 6  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  N  e.  CC ) )  ->  ( A  +  -u ( B  x.  N ) )  =  ( A  -  ( B  x.  N )
) )
14133impb 1147 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  CC )  ->  ( A  +  -u ( B  x.  N ) )  =  ( A  -  ( B  x.  N
) ) )
1510, 14eqtr2d 2329 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  CC )  ->  ( A  -  ( B  x.  N ) )  =  ( A  +  (
-u N  x.  B
) ) )
161, 2, 3, 15syl3an 1224 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  ( A  -  ( B  x.  N ) )  =  ( A  +  (
-u N  x.  B
) ) )
1716oveq1d 5889 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  (
( A  -  ( B  x.  N )
)  mod  B )  =  ( ( A  +  ( -u N  x.  B ) )  mod 
B ) )
18 znegcl 10071 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
19 modcyc 11015 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  -u N  e.  ZZ )  ->  (
( A  +  (
-u N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
2018, 19syl3an3 1217 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  (
( A  +  (
-u N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
2117, 20eqtrd 2328 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  (
( A  -  ( B  x.  N )
)  mod  B )  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696  (class class class)co 5874   CCcc 8751   RRcr 8752    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054   ZZcz 10040   RR+crp 10370    mod cmo 10989
This theorem is referenced by:  modadd1  11017  modmul1  11018  modsubdir  11024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fl 10941  df-mod 10990
  Copyright terms: Public domain W3C validator