MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddi Unicode version

Theorem moddi 11007
Description: Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
moddi  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B
)  mod  ( A  x.  C ) ) )

Proof of Theorem moddi
StepHypRef Expression
1 rpcn 10362 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  CC )
213ad2ant1 976 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  A  e.  CC )
3 recn 8827 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
433ad2ant2 977 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  B  e.  CC )
5 rpre 10360 . . . . . . . 8  |-  ( C  e.  RR+  ->  C  e.  RR )
65adantl 452 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  ->  C  e.  RR )
7 rerpdivcl 10381 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( B  /  C
)  e.  RR )
8 reflcl 10928 . . . . . . . 8  |-  ( ( B  /  C )  e.  RR  ->  ( |_ `  ( B  /  C ) )  e.  RR )
97, 8syl 15 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( B  /  C ) )  e.  RR )
106, 9remulcld 8863 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  RR )
1110recnd 8861 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  CC )
12113adant1 973 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( C  x.  ( |_ `  ( B  /  C
) ) )  e.  CC )
132, 4, 12subdid 9235 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  x.  B
)  -  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
14 rpcnne0 10371 . . . . . . . . 9  |-  ( C  e.  RR+  ->  ( C  e.  CC  /\  C  =/=  0 ) )
15143ad2ant3 978 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
16 rpcnne0 10371 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
17163ad2ant1 976 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
18 divcan5 9462 . . . . . . . 8  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 )  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( A  x.  B )  /  ( A  x.  C )
)  =  ( B  /  C ) )
194, 15, 17, 18syl3anc 1182 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( A  x.  B )  /  ( A  x.  C ) )  =  ( B  /  C
) )
2019fveq2d 5529 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( |_
`  ( ( A  x.  B )  / 
( A  x.  C
) ) )  =  ( |_ `  ( B  /  C ) ) )
2120oveq2d 5874 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( A  x.  C )  x.  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) ) )  =  ( ( A  x.  C )  x.  ( |_ `  ( B  /  C ) ) ) )
22 rpcn 10362 . . . . . . 7  |-  ( C  e.  RR+  ->  C  e.  CC )
23223ad2ant3 978 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  C  e.  CC )
248recnd 8861 . . . . . . . 8  |-  ( ( B  /  C )  e.  RR  ->  ( |_ `  ( B  /  C ) )  e.  CC )
257, 24syl 15 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( B  /  C ) )  e.  CC )
26253adant1 973 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( |_
`  ( B  /  C ) )  e.  CC )
272, 23, 26mulassd 8858 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( A  x.  C )  x.  ( |_ `  ( B  /  C
) ) )  =  ( A  x.  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
2821, 27eqtr2d 2316 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) )  =  ( ( A  x.  C
)  x.  ( |_
`  ( ( A  x.  B )  / 
( A  x.  C
) ) ) ) )
2928oveq2d 5874 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( A  x.  B )  -  ( A  x.  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  x.  B
)  -  ( ( A  x.  C )  x.  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) ) ) ) )
3013, 29eqtrd 2315 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  x.  B
)  -  ( ( A  x.  C )  x.  ( |_ `  ( ( A  x.  B )  /  ( A  x.  C )
) ) ) ) )
31 modval 10975 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( B  mod  C
)  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
32313adant1 973 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
3332oveq2d 5874 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( B  mod  C ) )  =  ( A  x.  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
34 rpre 10360 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  RR )
35 remulcl 8822 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
3634, 35sylan 457 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
37363adant3 975 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  B )  e.  RR )
38 rpmulcl 10375 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  ( A  x.  C )  e.  RR+ )
39383adant2 974 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  C )  e.  RR+ )
40 modval 10975 . . 3  |-  ( ( ( A  x.  B
)  e.  RR  /\  ( A  x.  C
)  e.  RR+ )  ->  ( ( A  x.  B )  mod  ( A  x.  C )
)  =  ( ( A  x.  B )  -  ( ( A  x.  C )  x.  ( |_ `  (
( A  x.  B
)  /  ( A  x.  C ) ) ) ) ) )
4137, 39, 40syl2anc 642 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( A  x.  B )  mod  ( A  x.  C ) )  =  ( ( A  x.  B )  -  (
( A  x.  C
)  x.  ( |_
`  ( ( A  x.  B )  / 
( A  x.  C
) ) ) ) ) )
4230, 33, 413eqtr4d 2325 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B
)  mod  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    x. cmul 8742    - cmin 9037    / cdiv 9423   RR+crp 10354   |_cfl 10924    mod cmo 10973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974
  Copyright terms: Public domain W3C validator