MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modexp Unicode version

Theorem modexp 11236
Description: Exponentiation property of the modulo operation. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
modexp  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ C
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )

Proof of Theorem modexp
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 981 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  C  e.  NN0 )
2 id 19 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) ) )
323adant2l 1176 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) ) )
4 oveq2 5866 . . . . . 6  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
54oveq1d 5873 . . . . 5  |-  ( x  =  0  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ 0 )  mod 
D ) )
6 oveq2 5866 . . . . . 6  |-  ( x  =  0  ->  ( B ^ x )  =  ( B ^ 0 ) )
76oveq1d 5873 . . . . 5  |-  ( x  =  0  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ 0 )  mod 
D ) )
85, 7eqeq12d 2297 . . . 4  |-  ( x  =  0  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) )
98imbi2d 307 . . 3  |-  ( x  =  0  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) ) )
10 oveq2 5866 . . . . . 6  |-  ( x  =  k  ->  ( A ^ x )  =  ( A ^ k
) )
1110oveq1d 5873 . . . . 5  |-  ( x  =  k  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ k )  mod 
D ) )
12 oveq2 5866 . . . . . 6  |-  ( x  =  k  ->  ( B ^ x )  =  ( B ^ k
) )
1312oveq1d 5873 . . . . 5  |-  ( x  =  k  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )
1411, 13eqeq12d 2297 . . . 4  |-  ( x  =  k  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) )
1514imbi2d 307 . . 3  |-  ( x  =  k  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) ) )
16 oveq2 5866 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A ^ x )  =  ( A ^ (
k  +  1 ) ) )
1716oveq1d 5873 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ ( k  +  1 ) )  mod 
D ) )
18 oveq2 5866 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( B ^ x )  =  ( B ^ (
k  +  1 ) ) )
1918oveq1d 5873 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) )
2017, 19eqeq12d 2297 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) )
2120imbi2d 307 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) ) )
22 oveq2 5866 . . . . . 6  |-  ( x  =  C  ->  ( A ^ x )  =  ( A ^ C
) )
2322oveq1d 5873 . . . . 5  |-  ( x  =  C  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ C )  mod 
D ) )
24 oveq2 5866 . . . . . 6  |-  ( x  =  C  ->  ( B ^ x )  =  ( B ^ C
) )
2524oveq1d 5873 . . . . 5  |-  ( x  =  C  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
2623, 25eqeq12d 2297 . . . 4  |-  ( x  =  C  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
2726imbi2d 307 . . 3  |-  ( x  =  C  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) ) )
28 zcn 10029 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
29 exp0 11108 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3028, 29syl 15 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 0 )  =  1 )
31 zcn 10029 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
32 exp0 11108 . . . . . . . 8  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3331, 32syl 15 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( B ^ 0 )  =  1 )
3433eqcomd 2288 . . . . . 6  |-  ( B  e.  ZZ  ->  1  =  ( B ^
0 ) )
3530, 34sylan9eq 2335 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A ^ 0 )  =  ( B ^ 0 ) )
3635oveq1d 5873 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) )
37363ad2ant1 976 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) )
38 simp21l 1072 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  ZZ )
39 simp1 955 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
k  e.  NN0 )
40 zexpcl 11118 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
4138, 39, 40syl2anc 642 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ k
)  e.  ZZ )
42 simp21r 1073 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  ZZ )
43 zexpcl 11118 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  ZZ )
4442, 39, 43syl2anc 642 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ k
)  e.  ZZ )
45 simp22 989 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  D  e.  RR+ )
46 simp3 957 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) )
47 simp23 990 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A  mod  D
)  =  ( B  mod  D ) )
4841, 44, 38, 42, 45, 46, 47modmul12d 11003 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A ^ k )  x.  A )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
4938zcnd 10118 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  CC )
50 expp1 11110 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5149, 39, 50syl2anc 642 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5251oveq1d 5873 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( ( A ^ k
)  x.  A )  mod  D ) )
5342zcnd 10118 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  CC )
54 expp1 11110 . . . . . . . 8  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5553, 39, 54syl2anc 642 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5655oveq1d 5873 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( B ^
( k  +  1 ) )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
5748, 52, 563eqtr4d 2325 . . . . 5  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) )
58573exp 1150 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( ( A ^ k )  mod  D )  =  ( ( B ^
k )  mod  D
)  ->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) ) )
5958a2d 23 . . 3  |-  ( k  e.  NN0  ->  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ (
k  +  1 ) )  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) ) ) )
609, 15, 21, 27, 37, 59nn0ind 10108 . 2  |-  ( C  e.  NN0  ->  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
611, 3, 60sylc 56 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ C
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NN0cn0 9965   ZZcz 10024   RR+crp 10354    mod cmo 10973   ^cexp 11104
This theorem is referenced by:  fermltl  12852  odzdvds  12860  lgslem4  20538  lgsmod  20560  lgsne0  20572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator