MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modlt Unicode version

Theorem modlt 11213
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modlt  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  mod  B
)  <  B )

Proof of Theorem modlt
StepHypRef Expression
1 recn 9036 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
2 rpcnne0 10585 . . . . 5  |-  ( B  e.  RR+  ->  ( B  e.  CC  /\  B  =/=  0 ) )
3 divcan2 9642 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( B  x.  ( A  /  B ) )  =  A )
433expb 1154 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  ->  ( B  x.  ( A  /  B
) )  =  A )
51, 2, 4syl2an 464 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( B  x.  ( A  /  B ) )  =  A )
65oveq1d 6055 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( B  x.  ( A  /  B
) )  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
7 rpcn 10576 . . . . 5  |-  ( B  e.  RR+  ->  B  e.  CC )
87adantl 453 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  B  e.  CC )
9 rerpdivcl 10595 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
109recnd 9070 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  CC )
11 reflcl 11160 . . . . . 6  |-  ( ( A  /  B )  e.  RR  ->  ( |_ `  ( A  /  B ) )  e.  RR )
129, 11syl 16 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( |_ `  ( A  /  B ) )  e.  RR )
1312recnd 9070 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( |_ `  ( A  /  B ) )  e.  CC )
148, 10, 13subdid 9445 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( B  x.  (
( A  /  B
)  -  ( |_
`  ( A  /  B ) ) ) )  =  ( ( B  x.  ( A  /  B ) )  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
15 modval 11207 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
166, 14, 153eqtr4rd 2447 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  mod  B
)  =  ( B  x.  ( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) ) ) )
17 fraclt1 11166 . . . . 5  |-  ( ( A  /  B )  e.  RR  ->  (
( A  /  B
)  -  ( |_
`  ( A  /  B ) ) )  <  1 )
189, 17syl 16 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) )  <  1 )
19 divid 9661 . . . . . 6  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( B  /  B
)  =  1 )
202, 19syl 16 . . . . 5  |-  ( B  e.  RR+  ->  ( B  /  B )  =  1 )
2120adantl 453 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( B  /  B
)  =  1 )
2218, 21breqtrrd 4198 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) )  <  ( B  /  B ) )
239, 12resubcld 9421 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) )  e.  RR )
24 rpre 10574 . . . . 5  |-  ( B  e.  RR+  ->  B  e.  RR )
2524adantl 453 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  B  e.  RR )
26 rpregt0 10581 . . . . 5  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <  B ) )
2726adantl 453 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( B  e.  RR  /\  0  <  B ) )
28 ltmuldiv2 9837 . . . 4  |-  ( ( ( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) )  e.  RR  /\  B  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( B  x.  ( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) ) )  <  B  <->  ( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) )  <  ( B  /  B ) ) )
2923, 25, 27, 28syl3anc 1184 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( B  x.  ( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) ) )  <  B  <->  ( ( A  /  B )  -  ( |_ `  ( A  /  B ) ) )  <  ( B  /  B ) ) )
3022, 29mpbird 224 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( B  x.  (
( A  /  B
)  -  ( |_
`  ( A  /  B ) ) ) )  <  B )
3116, 30eqbrtrd 4192 1  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  mod  B
)  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    < clt 9076    - cmin 9247    / cdiv 9633   RR+crp 10568   |_cfl 11156    mod cmo 11205
This theorem is referenced by:  zmodfz  11223  modid2  11226  modabs  11229  modsubdir  11240  digit1  11468  divalgmod  12881  bitsmod  12903  bitsinv1lem  12908  bezoutlem3  12995  eucalglt  13031  odzdvds  13136  fldivp1  13221  4sqlem6  13266  4sqlem12  13279  mndodcong  15135  oddvds  15140  gexdvds  15173  zlpirlem3  16725  sineq0  20382  efif1olem2  20398  lgseisenlem1  21086  modelico  26774  irrapxlem1  26775  pellfund14  26851  jm2.19  26954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fl 11157  df-mod 11206
  Copyright terms: Public domain W3C validator