Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  modval Structured version   Unicode version

Theorem modval 11257
 Description: The value of the modulo operation. The modulo congruence notation of number theory, modulo , can be expressed in our notation as . Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
modval

Proof of Theorem modval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6091 . . . . 5
21fveq2d 5735 . . . 4
32oveq2d 6100 . . 3
4 oveq12 6093 . . 3
53, 4mpdan 651 . 2
6 oveq2 6092 . . . . 5
76fveq2d 5735 . . . 4
8 oveq12 6093 . . . 4
97, 8mpdan 651 . . 3
109oveq2d 6100 . 2
11 df-mod 11256 . 2
12 ovex 6109 . 2
135, 10, 11, 12ovmpt2 6212 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  cfv 5457  (class class class)co 6084  cr 8994   cmul 9000   cmin 9296   cdiv 9682  crp 10617  cfl 11206   cmo 11255 This theorem is referenced by:  modcl  11258  mod0  11260  modge0  11262  modlt  11263  moddiffl  11264  modfrac  11266  modmulnn  11270  zmodcl  11271  modid  11275  modcyc  11281  modadd1  11283  modmul1  11284  moddi  11289  modsubdir  11290  modirr  11291  iexpcyc  11490  digit2  11517  dvdsmod  12911  divalgmod  12931  modgcd  13041  bezoutlem3  13045  prmdiv  13179  odzdvds  13186  fldivp1  13271  odmodnn0  15183  odmod  15189  gexdvds  15223  zlpirlem3  16775  sineq0  20434  efif1olem2  20450  lgseisenlem4  21141  dchrisumlem1  21188  ostth2lem2  21333  gxmodid  21872  modvalr  28172  sineq0ALT  29123 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-mod 11256
 Copyright terms: Public domain W3C validator