MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexv Unicode version

Theorem moexexv 2226
Description: "At most one" double quantification. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
moexexv  |-  ( ( E* x ph  /\  A. x E* y ps )  ->  E* y E. x ( ph  /\  ps ) )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem moexexv
StepHypRef Expression
1 nfv 1609 . 2  |-  F/ y
ph
21moexex 2225 1  |-  ( ( E* x ph  /\  A. x E* y ps )  ->  E* y E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530   E.wex 1531   E*wmo 2157
This theorem is referenced by:  mosub  2956  funco  5308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161
  Copyright terms: Public domain W3C validator